我要投稿 投诉建议

中考数学知识点

时间:2024-03-15 07:03:06 中考 我要投稿

中考数学知识点

  在我们的学习时代,不管我们学什么,都需要掌握一些知识点,知识点就是一些常考的内容,或者考试经常出题的地方。你知道哪些知识点是真正对我们有帮助的吗?以下是小编收集整理的中考数学知识点,欢迎阅读,希望大家能够喜欢。

中考数学知识点

中考数学知识点1

  读作三次根号a其中,a叫做被开方数,3叫做根指数。(a等于所有数,包括0)如果被开方数还有指数,那么这个指数(必须是三能约去的)还可以和三次根号约去。

  求一个数a的立方根的运算叫做开立方。

  立方根的性质:

  ⑴正数的立方根是正数。

  ⑵负数的立方根是负数。

  ⑶0的立方根是0。一般地,如果一个数X的立方等于 a,那么这个数X就叫做a的.立方根(cube root,也叫做三次方根)。如2是8的立方根,—3分之2是—27分之8的立方根,0是0的立方根。立方和开立方运算,互为逆运算。互为相反数的两个数的立方根也是互为相反数。负数不能开平方,但能开立方。

  立方根如何与其他数作比较?

  ⑴做这两个数的立方

  ⑵作差

  ⑶比较被开方数(如三次根号3大于三次根号2)任何数(正数、负数、或零)的立方根如果存在的话,必定只有一个。

中考数学知识点2

  知识要领:非负数,顾名思义,就是不是负数的数,也就是零和正实数。例如:0、3.4、9/10、π(圆周率)。

  非负数

  非负数大于或等于0。

  非负数中含有有理数和无理数。

  非负数的和或积仍是非负数。

  非负数的.和为零,则每个非负数必等于零。

  非负数的积为零,则至少有一个非负数为零。

  非负数的绝对值等于本身。

  常见的非负数

  实数的绝对值、实数的偶次幂、算术根等都是常见的非负数。

  常见表现形式

  非负数的准确数学表达是a≥0、│a│、a^2n是常见的非负数。

  知识归纳:任何一个非负数乘以-1都会得到一个非正数。

中考数学知识点3

  同位角知识:两条直线a,b被第三条直线c所截会出现“三线八角”。

  同位角的特征识别:

  1.在截线的同旁;

  2.在被截两直线的.同方向;

  3.同位角截取图呈“F”型。

  平行线的性质与判定

  平行线的性质:两直线平行,同位角相等。

  知识归纳:平行线的判定:同位角相等,两直线平行。

中考数学知识点4

  单项式的计算包括了基本的加减乘除运算,这也是代数式中的基本运算要求。

  单项式的计算

  单项式加减法则

  单项式加减即合并同类项,也就是合并前各同类项系数的和,字母不变。

  例如:3a+4a=7a,9a-2a=7a等

  单项式乘法法则

  单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式

  例如:3a·4a=12a^2

  单项式除法法则

  同底数幂相除,底数不变,指数相减。

  例如:9a^10÷3a^5=3a^5

  上述的.例子就是单项式的加减乘除运算解析,相信聪明的大家都熟记了吧。

中考数学知识点5

  1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。

  2.系数:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1.

  3.多项式:几个单项式的和叫多项式。

  4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

  5.常数项:不含字母的项叫做常数项。

  6.多项式的排列

  (1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

  (2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

  7.多项式的排列时注意:

  (1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。

  (2)有两个或两个以上字母的多项式,排列时,要注意:

  a.先确认按照哪个字母的指数来排列。

  b.确定按这个字母向里排列,还是向外排列。

  (3)整式:

  单项式和多项式统称为整式。

  8.多项式的加法:

  多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。

  9.同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。

  10.合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。

  11.掌握同类项的概念时注意:

  (1)判断几个单项式或项,是否是同类项,就要掌握两个条件:

  ①所含字母相同。

  ②相同字母的次数也相同。

  (2)同类项与系数无关,与字母排列的顺序也无关。

  (3)所有常数项都是同类项。

  12.合并同类项步骤:

  (1)准确的找出同类项;

  (2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变;

  (3)写出合并后的`结果。

  13.在掌握合并同类项时注意:

  (1)如果两个同类项的系数互为相反数,合并同类项后,结果为0;

  (2)不要漏掉不能合并的项;

  (3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

  14.整式的拓展

  整式的乘除:重点是整式的乘除,尤其是其中的乘法公式。乘法公式的结构特征以及公式中的字母的广泛含义,学生不易掌握.因此,乘法公式的灵活运用是难点,添括号(或去括号)时,括号中符号的处理是另一个难点。添括号(或去括号)是对多项式的变形,要根据添括号(或去括号)的法则进行。在整式的乘除中,单项式的乘除是关键,这是因为,一般多项式的乘除都要“转化”为单项式的乘除。

  整式四则运算的主要题型有:

  (1)单项式的四则运算

  此类题目多以选择题和应用题的形式出现,其特点是考查单项式的四则运算。

  (2)单项式与多项式的运算

  

中考数学知识点6

  平方差公式:a^2;-b^2;=(a+b)(a-b);

  完全平方公式:a^2;±2ab+b^2;=(a±b)^2;;

  注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的`平方和的形式,另一项是这两个数(或式)的积的2倍。

  立方和公式:a^3;+b^3;=(a+b)(a^2;-ab+b^2;);

  立方差公式:a^3;-b^3;=(a-b)(a^2;+ab+b^2;);

  完全立方公式:a^3;±3a^2;b+3ab^2;±b^3;=(a±b)^3;.

  其他公式:(1)a^3;+b^3;+c^3;+3abc=(a+b+c)(a^2;+b^2;+c^2;-ab-bc-ca)

  例如:a^2; +4ab+4b^2; =(a+2b)^

中考数学知识点7

  数学解题方法分别有哪些

  1、配方法

  所谓的公式是使用变换解析方程的同构方法,并将其中的一些分配给一个或多个多项式正整数幂的和形式。通过配方解决数学问题的公式。其中,用的最多的是配成完全平方式。匹配方法是数学中不断变形的重要方法,其应用非常广泛,在分解,简化根,它通常用于求解方程,证明方程和不等式,找到函数的极值和解析表达式。

  2、因式分解法

  因式分解是将多项式转换为几个积分产品的乘积。分解是恒定变形的基础。除了引入中学教科书中介绍的公因子法,公式法,群体分解法,交叉乘法法等外,还有很多方法可以进行因式分解。还有一些项目,如拆除物品的使用,根分解,替换,未确定的系数等等。

  3、换元法

  替代方法是数学中一个非常重要和广泛使用的解决问题的方法。我们通常称未知或变元。用新的参数替换原始公式的一部分或重新构建原始公式可以更简单,更容易解决。

  4、判别式法与韦达定理

  一元二次方程 ax2+ bx+ c=0( a、 b、 c属于 R, a≠0)根的判别, = b2-4 ac,不仅用来确定根的性质,还作为一个问题解决方法,代数变形,求解方程(组),求解不等式,研究函数,甚至几何以及三角函数都有非常广泛的应用。

  韦达定理除了知道二次方程的根外,还找到另一根;考虑到两个数的和和乘积的简单应用并寻找这两个数,也可以找到根的对称函数并量化二次方程根的符号。求解对称方程并解决一些与二次曲线有关的问题等,具有非常广泛的应用。

  5、待定系数法

  在解决数学问题时,如果我们首先判断我们所寻找的结果具有一定的'形式,其中包含某些未决的系数,然后根据问题的条件列出未确定系数的方程,最后找到未确定系数的值或这些待定系数之间的关系。为了解决数学问题,这种问题解决方法被称为待定系数法。它是中学数学中常用的方法之一。

  6、构造法

  在解决问题时,我们通常通过分析条件和结论来使用这些方法来构建辅助元素。它可以是一个图表,一个方程(组),一个方程,一个函数,一个等价的命题等,架起连接条件和结论的桥梁。为了解决这个问题,这种解决问题的数学方法,我们称之为构造方法。运用结构方法解决问题可以使代数,三角形,几何等数学知识相互渗透,有助于解决问题。

中考数学知识点8

  考点1

  相似三角形的概念、相似比的意义、画图形的放大和缩小。

  考核要求:

  (1)理解相似形的概念;

  (2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。

  考点2

  平行线分线段成比例定理、三角形一边的平行线的有关定理

  考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。

  注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。

  考点3

  相似三角形的概念

  考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。

  考点4

  相似三角形的判定和性质及其应用

  考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。

  考点5

  三角形的重心

  考核要求:知道重心的定义并初步应用。

  考点6

  向量的有关概念

  考点7

  向量的加法、减法、实数与向量相乘、向量的线性运算

  考核要求:掌握实数与向量相乘、向量的线性运算

  考点8

  锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30度、45度、60度角的三角比值。

  考点9

  解直角三角形及其应用

  考核要求:

  (1)理解解直角三角形的意义;

  (2)会用锐角互余、锐角三角比和勾股定理等解直角三角形和解决一些简单的实际问题,尤其应当熟练运用特殊锐角的三角比的值解直角三角形。

  考点10

  函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数

  考核要求:

  (1)通过实例认识变量、自变量、因变量,知道函数以及函数的定义域、函数值等概念;

  (2)知道常值函数;

  (3)知道函数的表示方法,知道符号的意义。

  考点11

  用待定系数法求二次函数的解析式

  考核要求:

  (1)掌握求函数解析式的方法;

  (2)在求函数解析式中熟练运用待定系数法。

  注意求函数解析式的步骤:一设、二代、三列、四还原。

  考点12

  画二次函数的图像

  考核要求:

  (1)知道函数图像的意义,会在平面直角坐标系中用描点法画函数图像

  (2)理解二次函数的图像,体会数形结合思想;

  (3)会画二次函数的大致图像。

  考点13

  二次函数的图像及其基本性质

  考核要求:

  (1)借助图像的直观、认识和掌握一次函数的性质,建立一次函数、二元一次方程、直线之间的联系;

  (2)会用配方法求二次函数的顶点坐标,并说出二次函数的有关性质。

  注意:

  (1)解题时要数形结合;

  (2)二次函数的平移要化成顶点式。

  考点14

  圆心角、弦、弦心距的概念

  考核要求:清楚地认识圆心角、弦、弦心距的概念,并会用这些概念作出正确的判断。

  考点15

  圆心角、弧、弦、弦心距之间的关系

  考核要求:认清圆心角、弧、弦、弦心距之间的关系,在理解有关圆心角、弧、弦、弦心距之间的关系的定理及其推论的基础上,运用定理进行初步的几何计算和几何证明。

  考点16

  垂径定理及其推论

  垂径定理及其推论是圆这一板块中最重要的知识点之一。

  考点17

  直线与圆、圆与圆的位置关系及其相应的数量关系

  直线与圆的位置关系可从与之间的关系和交点的个数这两个侧面来反映。在圆与圆的位置关系中,常需要分类讨论求解。

  考点18

  正多边形的有关概念和基本性质

  考核要求:熟悉正多边形的有关概念(如半径、边心距、中心角、外角和),并能熟练地运用正多边形的基本性质进行推理和计算,在正多边形的计算中,常常利用正多边形的半径、边心距和边长的一半构成的直角三角形,将正多边形的计算问题转化为直角三角形的计算问题。

  考点19

  画正三、四、六边形。

  考核要求:能用基本作图工具,正确作出正三、四、六边形。

  考点20

  确定事件和随机事件

  考核要求:

  (1)理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;

  (2)能区分简单生活事件中的必然事件、不可能事件、随机事件。

  考点21

  事件发生的可能性大小,事件的概率

  考核要求:

  (1)知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;

  (2)知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;

  (3)理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。

  注意:

  (1)在给可能性的大小排序前可先用“一定发生”、“很有可能发生”、“可能发生”、“不太可能发生”、“一定不会发生”等词语来表述事件发生的可能性的大小;

  (2)事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。

  考点22

  等可能试验中事件的概率问题及概率计算

  考核要求:

  (1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;

  (2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;

  (3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题。

  注意:

  (1)计算前要先确定是否为可能事件;

  (2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。

  考点23

  数据整理与统计图表

  考核要求:

  (1)知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;

  (2)结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。

  考点24

  统计的含义

  考核要求:

  (1)知道统计的意义和一般研究过程;

  (2)认识个体、总体和样本的`区别,了解样本估计总体的思想方法。

  考点25

  平均数、加权平均数的概念和计算

  考核要求:

  (1)理解平均数、加权平均数的概念;

  (2)掌握平均数、加权平均数的计算公式。注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。

  考点26

  中位数、众数、方差、标准差的概念和计算

  考核要求:

  (1)知道中位数、众数、方差、标准差的概念;

  (2)会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。

  注意:

  (1)当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;

  (2)求中位数之前必须先将数据排序。

  考点27

  频数、频率的意义,画频数分布直方图和频率分布直方图

  考核要求:

  (1)理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;

  (2)会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1。

  考点28

  中位数、众数、方差、标准差、频数、频率的应用

  考核要求:

  (1)了解基本统计量(平均数、众数、中位数、方差、标准差、频数、频率)的意计算及其应用,并掌握其概念和计算方法;

  (2)正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;

  (3)能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,研究解决有关的实际生活中问题,然后作出合理的解决。

中考数学知识点9

  1、矩形的概念

  有一个角是直角的平行四边形叫做矩形。

  2、矩形的性质

  (1)具有平行四边形的一切性质(2)矩形的四个角都是直角

  (3)矩形的对角线相等(4)矩形是轴对称图形

  3、矩形的判定

  (1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形

  (3)定理2:对角线相等的平行四边形是矩形

  4、矩形的面积S矩形=长×宽=ab

  二次函数概念

  二次函数的概念:一般地,形如ax^2+bx+c = 0的函数,叫做二次函数。

  这里需要强调:和一元二次方程类似,二次项系数a≠0,而b,c可以为零.二次函数的定义域是全体实数.

  二次函数图像与性质口诀

  二次函数抛物线,图象对称是关键;

  开口、顶点和交点,它们确定图象限;

  开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。

  一、目标与要求

  1、感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;

  2、经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;

  3、通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。

  二、重点

  理解并掌握不等式的.性质;

  正确运用不等式的性质;

  建立方程解决实际问题,会解"ax+b=cx+d"类型的一元一次方程;

  寻找实际问题中的不等关系,建立数学模型;

  一元一次不等式组的解集和解法。

  三、难点

  一元一次不等式组解集的理解;

  弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式;

  正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。

中考数学知识点10

  1、加法:(1)同号两数相加,取原来的符号,并把它们的绝对值相加;(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。可使用加法交换律、结合律。

  2、减法:减去一个数等于加上这个数的相反数。

  3、乘法:(1)两数相乘,同号取正,异号取负,并把绝对值相乘。(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的`个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。

  4、除法:(1)两数相除,同号得正,异号得负,并把绝对值相除。(2)除以一个数等于乘以这个数的倒数。(3)0除以任何数都等于0,0不能做被除数。

  5、乘方与开方:乘方与开方互为逆运算。

  6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。

  通过上面对数学中实数的运算知识的讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得理想的成绩哦。

中考数学知识点11

  一概述

  列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:

  ⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

  ⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。

  ⑶用含未知数的代数式表示相关的量。

  ⑷寻找相等关系(有的`由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。

  ⑸解方程及检验。

  ⑹答案。

  综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

  二常用的相等关系

  1.行程问题(匀速运动)

  基本关系:s=vt

  ⑴相遇问题(同时出发):

  ⑵追及问题(同时出发):

  若甲出发t小时后,乙才出发,而后在B处追上甲,则

  ⑶水中航行:;

  2.配料问题:溶质=溶液浓度

  溶液=溶质+溶剂

  3.增长率问题:

  4.工程问题:基本关系:工作量=工作效率工作时间(常把工作量看着单位“1”)。

  5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。

  三注意语言与解析式的互化

  如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、……

  又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。

  四注意从语言叙述中写出相等关系。

  如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。五注意单位换算

  如,“小时”“分钟”的换算;s、v、t单位的一致等。

中考数学知识点12

  1.解直角三角形

  1.1.锐角三角函数

  锐角a的正弦、余弦和正切统称∠a的三角函数。

  如果∠a是Rt△ABC的一个锐角,则有

  1.2.锐角三角函数的计算

  1.3.解直角三角形

  在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。

  2.直线与圆的位置关系

  2.1.直线与圆的位置关系

  当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。

  直线与圆的位置关系有以下定理:

  直线与圆相切的判定定理:

  经过半径的外端并且垂直这条半径的直线是圆的切线。

  圆的切线性质:

  经过切点的半径垂直于圆的切线。

  2.2.切线长定理

  从圆外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。

  切线长定理:过圆外一点所作的圆的两条切线长相等。

  2.3.三角形的内切圆

  与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。三角形的.内心是三角形的三条角平分线的交点。

  3.三视图与表面展开图

  3.1.投影

  物体在光线的照射下,在某个平面内形成的影子叫做投影。光线叫做投影线,投影所在的平面叫做投影面。由平行的投射线所形成的投射叫做平行投影。

  可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。

  3.2.简单几何体的三视图

  物体在正投影面上的正投影叫做主视图,在水平投影面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。

  主视图、左视图和俯视图合称三视图。

  产生主视图的投影线方向也叫做主视方向。

  3.3.由三视图描述几何体

  三视图不仅反映了物体的形状,而且反映了各个方向的尺寸大小。

  3.4.简单几何体的表面展开图

  将几何体沿着某些棱“剪开”,并使各个面连在一起,铺平所得到的平面图形称为几何体的表面展开图。

  圆柱可以看做由一个矩形ABCD绕它的一条边BC旋转一周,其余各边所成的面围成的几何体。AB、CD旋转所成的面就是圆柱的两个底面,是两个半径相同的圆。AD旋转所成的面就是圆柱的侧面,AD不论转动到哪个位置,都是圆柱的母线。

  圆锥可以看做将一根直角三角形ACB绕它的一条直角边(AC)旋转一周,它的其余各边所成的面围成的一个几何体。直角边BC旋转所成的面就是圆锥的底面,斜边AB旋转所成的面就是圆锥的侧面,斜边AB不论转动到哪个位置,都叫做圆锥的母线。

中考数学知识点13

  数学经常遇到的问题解答

  1、要提高数学成绩首先要做什么?

  这一点,是很多学生所关注的,要提高数学成绩,首先就应该从基础知识学起。不少同学觉得基础知识过于简单,看两遍基本上就都会了。这种“自我感觉良好”其实是一种错觉,而真正考试时又觉得无从下手,这还是基础不牢的表现,因此要提高数学成绩先要把基础夯实。

  2、基础不好怎么学好数学?

  对于基础差的同学来说,课本是就是学好数学的秘籍,把课本上的定义、公式、定理全部弄懂,力争在理解的基础上全部背熟,每一道例题、每一道课后题都要掌握。我们知道只有把公式、定理烂熟于心,才能举一反三、活学活用,把课本的知识学透有两个好处,第一,强化基础;第二,提高得分能力。

  3、是否要采用题海战术?

  方法君曾不止一次提到了“题海战术”,题海战术究竟可不可取呢?“题海战术”其实也是一种学习方法,但很多学生只知道做题,不懂得总结,体现不出任何的学习效果。因此在做题后要总结至关重要,只有认真总结才能不断积累做题经验,这样才能取得理想成绩。

  4、做题总是粗心怎么办?

  很多学生成绩不好,会说自己是因为粗心导致的,其实“粗心”只是借口,真正的'原因就是题做得少、基础知识不牢、没有清晰的解题思路、计算能力不强。因此在平时的学习中,一定要注重熟练度和精准度的练习。如果总是给自己找“粗心”的借口,也就变相否定了自己的学习弱点,所以,要告诉自己,高中数学没有“粗心”只有“不用心”。

  为什么要学习数学

  作为一门普及度极广的学科,数学在人类文明的发展史上一直占据着重要的地位。虽然很多人可能会对数学产生排斥,认为它枯燥无味,但事实上,数学是所有学科的基石之一,对我们日常生活以及未来的职业发展有着重大影响。下面我将详细阐述学习数学的重要性。

  首先,数学可以帮助我们提高逻辑思维能力。数学的学科性质使我们在学习的过程中时时刻刻面临着思考、推理、证明等诸多问题,而这些问题正是锻炼我们逻辑思维的好机会。通过长期的学习和练习,我们的思维能力得到提升,可以更加清晰地分析问题,更快速地找到正确的答案。这对我们在工作和生活中都非常有帮助,尤其是在解决复杂问题时更能得心应手。

  其次,数学在现代科技中起着至关重要的作用。在计算机科学、物理学、经济学、工程学等领域,数学可以帮助我们建立模型、分析数据、预测趋势,并且可以在实际应用中优化和改进。例如,在人工智能领域,深度学习技术所涉及的数学概念包括线性代数、微积分和概率论等,如果没有深厚的数学基础,很难理解和应用这些技术。同时,在工程学领域,许多机械、电子、化工等产品的设计和制造过程,也需要运用到数学知识,因此学习数学可以使我们更好地参与到现代科技的发展中。

  除此之外,数学也是一种普遍使用的语言,许多学科和领域都使用数学语言进行表达和交流。例如,在自然科学领域,生物学、化学、物理学等学科都使用数学语言来描述自然世界的规律和现象。在社会科学和商科领域,经济学和金融学运用的数学概念,如微积分、线性代数和统计学等,使得我们能够更好地理解经济和财务数据,并进行决策。因此,学习数学可以让我们更好地理解、沟通和交流各个领域的知识。

  最后,学习数学也可以为我们的职业发展带来广泛的机遇和发展空间。在许多领域,数学专业的毕业生都有很广泛的就业机会,如金融界、数据科学、研究机构、教育等。数学专业的人才,不只会提供理论支持,同时也能够解决现实中具体的问题,使其在各自领域脱颖而出。

中考数学知识点14

  科学记数法—表示较大的数

  1.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a<10,n为正整数)

  2.规律方法总结:

  ①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1,按此规律,先数一下原数的整数位数,即可求出10的.指数n;

  ②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号。

中考数学知识点15

  中位线概念

  (1)三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。

  (2)梯形中位线定义:连接梯形两腰中点的线段叫做梯形的中位线。

  注意(1)要把三角形的中位线与三角形的中线区分开。三角形中线是连接一顶点和它的对边中点的线段,而三角形中位线是连接三角形两边中点的线段。

  (2)梯形的.中位线是连接两腰中点的线段而不是连结两底中点的线段。

  (3)两个中位线定义间的联系:可以把三角形看成是上底为零时的梯形,这时三角形的中位线就变成梯形的中位线。

  中位线定理

  (1)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.

  (2)梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.

  中位线定理推广

  三角形有三条中位线,首尾相接时,每个小三角形面积都等于原三角形的四分之一,这四个三角形都互相全等。

【中考数学知识点】相关文章:

中考数学必考知识点03-12

中考数学圆知识点总结01-13

学生初中中考数学复习知识点整理10-04

中考数学知识点函数及其图象02-20

中考知识点生物01-16

中考英语知识点03-11

中考物理知识点03-12

中考化学知识点梳理02-21

中考物理知识点总结02-20