我要投稿 投诉建议

《分数的意义》教学设计

时间:2022-10-10 08:15:43 教学设计 我要投稿

《分数的意义》教学设计通用

  作为一名教学工作者,常常需要准备教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。如何把教学设计做到重点突出呢?下面是小编整理的《分数的意义》教学设计通用,欢迎大家分享。

《分数的意义》教学设计通用

《分数的意义》教学设计通用1

  教学内容:

  《分数的意义》第一课时。

  学情分析:

  学生在三年级学习《分数的初步认识》时,已经借助操作、直观,初步认识了分数,已经知道了分数的各部分的名称,会读、会写简单的分数,还会比较分数大小及进行简单的同分母分数加、减法。

  教学设想:

  本节课中单位“1”和分数单位这两个概念教学非常重要,应从直观到抽象,利用操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得者得感悟,使学生真正题解这些概念的意义。

  教学目标:

  1.在学生原有知识基础上,使学生知道分数的产生,理解分数的意义,知道分数各个部分和分数单位的含义。

  2.利用操作、讨论及交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

  3.培养学生的抽象、概括能力。

  教学重点:

  明确分数和分数单位的意义,理解单位“1”的含义。

  教学难点:

  单位“1”的理解。

  教具和学具:

  长方形白纸、一米长的绳子、多媒体课件。

  教学过程:

  一、创设情景,温故引新。

  师:我们已经初步认识了分数。哪一位同学来说说几个分数?你知道分数各部分的名称吗?

  师:那你们知道分数是怎样产生的吗?

  二、教学分数的产生。

  1.在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。课件呈现情境图,介绍分数的起源和发展历史。

  2.计算中也遇到这样的问题。

  3.课件展示分物不能得到整数的情况。

  总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。因此分数是人类为了适用实际需要而产生的。

  三、教学分数的意义。

  1.师:下面老师要先考考大家,你能举例说明1/2的含义吗?(多媒体出示题目,学生口答)

  出示一个饼平均分成两份。

  师:每一块可以用什么分数表示?它表示什么意思?

  师强调:一定要平均分(板书:平均分)。

  展示把一个长方形和1米长的绳子平均分。

  学生说一说每份与总数的关系。

  2.重点对一些物体平均分,每一份与总数的关系,试着用分数来表示。认识单位“1”。

  师:利用这三种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

  生:一张长方形纸、一米长的绳子、6个小立方体。

  师:像这样把一张长方形纸平均分,我们可以称之为把一个物体平均分。

  把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。

  把8支笔平均分给4个同学,我们又可以称之为把一些物体平均分。

  师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。

  师:像这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,

  教师强调:

  ①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个梨、一枝铅笔、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。

  ②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。

  概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

  用学具创造出一个分数,同桌间说说你这个分数的意义。

  理解分子分母的意义。

  师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份” 、“这样的一份或几份”分别是分数中的什么?

  小组交流。后教师小结。

  师:接下来老师想出几道题来考考大家,看看哪位同学学的又快又好。

  ①把文具盒里的所有铅笔平均分给4位同学,每个同学得到这盒铅笔的几分之几?

  生:1/4

  师:为什么可以用1/4来表示?

  师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?

  如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?

  如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?

  师:现在这个文具盒里有8支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?

  师:如果我再增加2支铅笔,把10支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?

  师:为什么同样是1/2,铅笔的支数不一样?

  生:分小组讨论

  师:是啊,因为一个整体表示的具体数量不同,所以同样是1/2,铅笔支数也就不一样了。

  四、教学分数单位。

  师:整数有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?

  多媒体出示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

  师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。

  师:举例说明,并说出几个分数让学生回答,后让学生自己也说一说。

  五、小结。

  今天这节课我们学习了?你有哪些收获?

  练习:数学书上做一做。

《分数的意义》教学设计通用2

  教学内容:

  五年级下册第85-87页。

  教学目标:

  1、引导学生经历探究分数意义的过程,理解分数表示“部分与整体的关系”及单位“1”的含义。

  2、认识分数各部分名称及分子、分母表示的意义。

  3、培养学生分析、综合、比较、抽象、概括等初步的逻辑思维能力。

  4、体验学习数学的成功和愉悦,培养学生学习数学的积极情感。

  教学重难点:

  充分理解分数是表示“部分与整体的关系”

  教(学)具准备:

  每个小组一个圆片、一条10厘米长的线段、6根彩笔、一张长方形纸、熊猫组图、苹果组图、玻璃球、多媒体课件一套。

  教学过程:

  一、创设情境,引入新知

  谈话导入:

  拿出4个苹果,提问平均分给4个人,每人分得多少?

  有2个苹果,平均分给2个人,每人分得多少?

  有1个苹果,平均分给1个人,每人分得多少?

  “半个”这个结果还能用整数表示吗?用分数1/2表示。

  师:实际生活中,人们在进行测量和计算时往往不能得到整数的结果,为了适应这种实际的需要,于是就产生了分数。从而揭示课题。

  二、探索交流,建构分数

  (一)教学分数的意义

  1、教学把一个物体、一个计量单位平均分

  找分子是1或几的分数:

  (1)师提出要求,生动手操作。(出示课件)

  (2)组织汇报交流

  交流中引导学生说出找分数的过程,体验分数的意义。

  2、教学把一个整体平均分

  (1)师提出要求,生动手操作。(出示课件)

  (2)组织汇报交流

  a交流苹果组图,引导学生说出找分数的过程,把谁平均分

  b联系上一环节中的内容比较被平均分的东西有什么不同?

  C教学“整体”,教师点出像4个苹果这样的多个物体就称之为一个整体,8个苹果平均分,也叫把一个整体平均分。

  D利用“一个整体”概念这个新知来理解在“熊猫组图”中找到的分数。重点沟通相对量与具体量之间的联系。

  3、教学单位“1”

  师指出:像这样的一个物体、一个计量单位、许多物体组成的一个整体都用自然数1来表示,就叫做单位“1”。

  追问:谁可以做单位“1”?

  4、根据板书师生共同归纳分数的意义,补充完整分数的意义及课题。

  5、随机练:a说出黑板上的分数表示的意义。

  B联系生活,让学生在现实情境中把握分数的意义

  (二)自学课本,认识分数的各部分所表示的意义

  1、师提出自学要求,生自学课本

  2、生举例汇报自学所得

  3、随机练:拿出6支彩笔的()/()——1/2、分母是6、分子是1、2/3

  生说出理由

  三、分层练习,深化提高(见课件)

  1、快速动笔,课本中做一做

  2、轻松片刻。(游戏:摸一摸,说一说)

  一个器皿里装有8个玻璃球,生摸出后说出占整体的几分之几。

  四、总结

  五年级下册《分数的意义》教案这篇文章共3341字。

《分数的意义》教学设计通用3

  教学内容:

  教材第73到74页分数的意义,“练一练”,练习十三1到4题。

  教学目标:

  1、了解分数的产生,理解分数的意义,认识分数的分母、分子,认识分数单位的特点,能正确读、写分数。

  2、培养学生抽象概括能力。

  3、感受“知识来源于实践,又服务于实践”的观点。

  教学重点:

  理解分数的意义。

  教学难点:

  单位“1”的感知。

  教学准备:

  多媒体,实物投影仪

  教学内容和过程:

  一、创设情境

  1、同学们,这是几?(板书“1”)

  这里有1位老师,1位同学,1还可以表示什么吗?

  我相信你们学了今天这节课以后,对1将会有一个更深刻地认识。

  2、揭示课题

  我们在四年级的时候学过分数,今天我们要继续来学习“分数的意义”。[板书]

  [从学生身边熟悉的1引导学生对1的认识,使学生对所学知识有一个整体的感知,并对学习新的知识产生亲切感]

  二、新授

  1、这里有三幅图,我们一起来看一下。

  出示书P73的三副图。(引导学生说出把……平均分成……,每份是它的……。)

  (1)出示月饼图。提问学生:把一块饼平均分成2份,每份是它的几分之几?( )

  (2)出示长方形图。提问:把这张正方形纸怎样分?分成了几份?1份是它的几分之几?这样的5份呢?

  (3)出示线段图提问:把1米平均分成10份,这样的1份是几分之几米?9份呢?

  三、探索研究

  1、现在请同学把目光集中到课桌上,看看老师给你们准备了什么啊?

  一张白纸,一根1米长的绳子。

  2、你们带了写什么材料呢?

  (一堆物体)

  3、这些材料能不能通过平均分,得到一些分数呢?

  4、学生小组交流,分一分并汇报。

  [从生活中挑选了一些实物,作为寻找分数的材料,首先引导学生观察这些材料并猜想能不能用平均分的方法得到分数,然后动手操作寻找分数。展示时重点展示平均分多个物体得到分数的操作过程,让学生感受可以把许多物体看作一个整体,把这个整体平均分成不同的份数,其中的一份或几份也可以用分数表示的过程。为抽象分数的意义做好铺垫,感悟分数就在生活之中。]

  5、小结:

  以前我们都是把一个物体,一个计量单位平均分,得到了一些分数,刚才你们在分的时候,还可以把许多个物体看成一个整体平均分得到分数。象这样一个物体,一个计量单位和多个物体组成的一个整体,都可以用自然数“1”表示,通常我们把它叫做单位“1”。(板书:单位“1”)

  6、讲授例题(多媒体出示)

  出示5个桃子提问:这是什么?

  把5个桃子看作(一个整体),平均分成5份,每份有几个桃子?占这个整体的几分之几?

  2个桃子呢?

  7、出示8片枫叶问:把8片枫叶看作一个整体,平均分成4份,每份几个泥人?占这个整体的几分之几?

  6片枫叶呢?

  8、结合前面分得的分数,揭示分数的意义。(板书)

  9、复习分数各部分的名称及表示的含义。(小组讨论)

  9、看书P74的概念。

  10、做书上练一练。请两位学生回答。

  11、总结,评价。

  [学生通过自己动手找分数,在已经建立直观认识的基础上,归纳分数的意义,不强调死记硬背,让学生能用自己的语言归纳,接着引导学生看书进一步理解分数的意义。]

  三、课堂实践

  现在我们一起来闯三关。(网络教学)

  1、第一关,用分数表示下面各图中的涂色部分。

  2、第二关,用下面的分数表示图中的涂色部分,对不对?

  3、第三关,根据给出的分数在下面各图中画出阴影部分。

  4、勇闯三关后,我们一起来进行自我检测。

  请同学和你的同桌之间说一说这个分数在句子里所表达的意思,需要帮助的同学可以寻求电脑的帮助。

  5、下面我们要来继续冲关,请你来看一看,哪些话中存在错误呢?

  6、同学们做得都不错,下面我们一起来玩一个游戏。请你们拿出10粒棋子。

  请你摆出它的1/2,是多少粒?12粒棋子的1/2,是多少粒?为什么同样是1/2,而你们有不同的答案呢?(单位“1”不同)

  请你们表示出12粒棋子的1/2,1/3,1/4,1/6,是多少粒棋子?为什么单位“1”相同了,而你们的结果不同呢?(平均分的份数不同)

  [让学生体会分数的意义,学生与学生,教师与学生之间互动交流,体现学生主体,教师主导的地位。]

  四、课堂小结

  今天这节课我们学习了分数的意义,下一节课我们继续来深入研究。

  五、课堂作业

  练习十三第4题。

  六、回家作业

  练习册

  七、板书设计

  分数的意义

  把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数。

《分数的意义》教学设计通用4

  教学内容:

  人教版《义务教育课程标准实验教科书数学》五年级(下册)第60—62页的例1及“做一做,练习十一1—3小题

  教学目标:

  (1)在初步认识分数的基础上,使学生经历分数意义的抽象、概括过程,初步理解单位“1”和分数单位的含义,在操作活动中建构分数的意义。

  (2)培养初步的观察能力、抽象概括能力及与同伴合作学习的能力。

  (3)使学生初步了解分数在日常生活中的应用,增强自主探索、合作交流的意识,展示领袖学生在课堂上的风采,树立学生学习信心。

  教学重点:

  抽象出单位“1”的概念,概括分数的意义并认识分数单位

  教学难点:

  能比较透彻的理解分数的意义

  教学准备:

  课件、例1的图片

  教学流程:

  一、激活旧知,创境引题

  (1)、口算:

  0.75÷15=0.4×0.8=4×0.25=0.36+1.54=1.24-0.46

  1.01×99=420÷35=25×12=135÷0.5=1÷2=

  (2)、引导回忆,

  出示“真假让你辨”。(认为正确的打“√”,错误的打“×”,用手势表示。)

  ①(—)的分母是3,分子是2,中间一条横线叫分数线。(  )

  ②妈妈把一块饼分成4份,其中的3份可以用( — )表示。(  )

  交流讨论第②题并引出“平均分”。

  小结:只有“平均分”了,才能用分数来表示。“平均分”是产生分数的前提条件。进而出示“平均分的饼图”并让学生试着用完整的语言来说一说平均分的过程。

  (3)引题导入:同学们对分数已经有了一些认识。今天这节课,我们想在这个基础上进一步来认识分数。(板书:分数的意义)

  (评析:《小学数学新课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在教学“分数的意义”这一概念时,我注意从学生的学情出发,用领袖学生的记忆唤起大多数学生已有的知识经验,帮助全体学生找到新知与旧知的链接点,让全体学生主动地投入学习。)二、先学后教感悟提炼建构新知

  1、初步感知与理解

  (1)(出示例1)根据每副图的意思,试着用分数表示图中的涂色部分。(学生打开课本到第60页)先填一填,并想一想每个分数各表示什么?

  交流汇报:你认为这些图中分别是把什么平均分的?平均分成了几份?用分数表示的是其中的几份?

  师结合学生的回答指出:

  ①一个饼可以称为一个物体(板书:一个物体)

  长方形是一种图形,也可以称为一个物体。像这样,我们可以把一个物体平均分一分得到了分数。

  ②1米长的线段可以称为是一个计量单位。(板书:一个计量单位)我们也可以把一个计量单位平均分一分得到了分数。

  ③引导思考:最后一幅图还是一个物体吗?(不是)这里是把6个圆看作一个整体,也可以说是由许多物体组成的一个整体。(板书:由许多物体组成的一个整体)平均分一分也得到了分数。

  (2)揭示单位“1”:

  ①通过刚才的分一分、说一说,我们发现在表示分数时,被平均分的对象是非常广泛的。它可以是一个物体、一个计量单位或由许多物体组成的一个整体。

  为了简明地表示这个被平均分的对象,我们就用自然数1来表示。这儿的1可以表示一个物体、一个计量单位,也可以表示由许多物体组成的一个整体。通常又把它叫做单位“1”。(板书:单位“1”)

  ②让学生举例说一说。这个单位“1”还可以表示些什么?

  ③扩展对单位“1”的认识:

  其实这个单位“1”的范围是非常广泛的,除了刚才大家讲到的很多例子以外,还有许许多多。大到地球、宇宙,小到纳米、微米都可以看作单位“1”。

  ④试着说一说刚才例1中的这些图分别是把什么看作单位“1” ?是把单位“1”平均分成了几份、表示这样的几份呢?

  2.引导提炼与概括:

  (1)刚才得到的这些分数,我们都是把单位“1”平均分成3份、4份、5份等等,想一想:还能把单位“1”平均分成9份、10份、100份,甚至更多吗?

  揭示:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

  (2)关注重点:

  你觉得这句话中最容易疏忽的是什么地方?(师圈出“平均分”)

  (3)沟通联系:

  想一想:“把单位1平均分成若干份”这个“平均分成”的份数相当于分数中的什么?

  “表示这样的一份或几份”这个取了“其中的几份”又相当于分数中的哪一部分呢?

  3、认识分数单位

  揭示:其实分数也像整数、小数一样有自己的分数单位。我们把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。想一想:分数单位就是指什么?(教师可以结合前面教学中的分数加以举例。)

  (评析:建构主义教学论认为“学生的知识建构不是教师传授与输出的结果,而是通过亲历、通过与学习环境间的交互作用来实现的。”教学中,结合对分数意义的理解,我注意做好学生角色的有效转换,带着学生走进“分数”,特别是学生对于“单位1”的理解是一个难点,于是,我又大胆放手让领袖学生提出问题、分析问题、辨析问题,真正体现了学生是学习的主体,从而帮助全体学生实现思维的“加速”。)

  三、展示反馈,丰富感知

  1、尝试说一说(课本第61--62页“做一做”)

  说说每个分数的分数单位,以及各有多少个这样的分数单位。

  2、动手试一试

  完成教材第63页的“练一练”:

  用分数表示下面各图中的涂色部分,先填一填,然后再想一想:每个分数的分数单位是多少?各有几个这样的分数单位?

  学生操作并交流(略)。

  (评析:在学生初步理解了分数单位的基础上,我特别注意让学生运用多种感官参与丰富的学习活动,填一填、想一想、说一说,学生在这样的学习活动中不断地体验与感受,不仅帮助学生分散了难点,同时又发展了学生的数感,也在这一过程中更加展示了领袖学生的风采。)

  四、巩固拓展,发散思维

  1.先读出下面的分数,并说一说每个分数的分数单位。(a不等于0)

  设疑提问:一个分数的分数单位是多少,是由什么决定的?

  2、尝试完成练习十一的第4题:“在每个图里涂色表示。”

  学生独立完成后试着让学生讨论与交流:三幅图都表示( ),为什么每次涂色桃子的个数却不相同呢?

  小结:由于每次单位“1”桃子的具体数量不同,所以每次需要涂色的桃子的个数也就不同。所以,我们在涂色时要看清楚把谁看作单位“1”,单位“1”的具体数量有多少。

  3、联系生活解决

  读一读信息中的分数,并想一想每个分数表示的意义。

  (1)五年级甲班的三好学生占全班人数的( —)

  (2)地球表面大约有(—)被海洋覆盖。

  (3)一个婴儿每日至少有(—)的时间是在睡眠中度过的。

  (4)中国是一个地少人多的国家,人均土地面积仅占世界人均土地面积的(—)却养活了世界人口的(—)。

  4、拓展提高

  有12支铅笔,平均分给2个同学。每支铅笔是铅笔总数的,每人分得的铅笔是铅笔总数的。

  讨论:说一说为什么是“(—)”和“(—)”?

  小结:这两个分数都是以“12支铅笔”为单位“1”,但由于平均分的份数不同,所以表示相应的1份的数量也就不同。

  五、总结全课

  今天我们认识了“分数的意义”,还认识了分数单位。你有一些什么收获呢?(学生畅谈收获)

  (评析:通过提供丰富的、有层次的一系列数学活动,使学生经历运用数学知识解决实际问题的过程,既加深了对分数意义的认识,又积累了丰富的数学活动经验,提高了学生的数学思考能力,同时又发展了学生合理的创造意识。)

  反思:

  在本节课的教学中,主要尝试以下几点:

  一、课堂教学结构能适应并引导学生的学习

  课堂教学结构,很多时候都是老师进行精心地设计,帮助学生找准知识的生长点与链接点,促进学生顺利地实行知识的迁移。可是,当这些学生长大以后,在面对一个新的问题时,谁去帮他做这件事呢?还是需要他自己去主动调动已有的认知,找到新知与旧知的链接点。与其让他们长大以后再去做这件事,还不如现在就让他们去做?于是,在课堂上,教师尽量不帮学生作预先的设计,也没有创设多少的情境,而是改变以前的学习方式,充分发挥领袖学生的引导作用,让学生在具体的问题情境中唤起已有的知识经验,促进学生主动地回忆、交流、阅读与思考,并在这一过程中让他们一点一点地感悟学习方法。因为我一直认为在引导学生解决问题的过程中有意识地渗透一些有效的学习方法,对他们终身是有收益的。

  二、数学学习活动培养并发展学生的创造力

  怎样的学习才是有效的?边教学边思考边探索,我深深地相信:只有让孩子在体验中学习、在创造中学习,学生才会真正地理解知识,同时自身的创造力也才能得到真正的培养。在教学中,针对小学生以形象思维为主的特点,没有把书本上现成的分数的意义告诉学生,而是在学生产生了强烈的探索欲望之后,及时设计了一系列的操作活动,调动学生的多种感官来参与概念学习,想办法让学生在各种想像、交流、画图与操作中去体验并自觉得出分数的意义。这样,新知就在学生们不断地思考与动手中,慢慢地、不知不觉地内化到学生的认知结构中,同时,学生的学习具有了鲜明的个性与创造性。课堂上的每一个环节,都力求做到了多给学生一个机会,让学生自己去体验;多给学生一个环境,让学生自己去感受;多给学生一个困难,让学生自己去解决;多给学生一些自由,让学生自己去创造;多给学生一个舞台,让学生自己去演讲。

  三、动手实践、自主探索、合作交流是学生学习数学的重要方式

  学生在三年级的时候就对分数有了初步的认识,分数的意义对于小学生来说是一个比较抽象的概念,怎样让学生理解单位“1”的含义?引导学生一步一步地从具体的实例中逐步抽象归纳出分数的意义是本节课所要解决的2个重点问题。因此,在本节课的设计上我淡化形式,注重实质,注意数学与生活的联系,一切以学生的发展为根本,以提升学生的数学思维为核心,充分发挥领袖学生的引导作用,引导学生在动手实践、自主探究与合作交流中体会、领悟单位“1”的含义、进而逐步理解分数的意义。

  人类生活与教学之间的联系应当在数学课程中得到充分体现。为此在课前复习的过程中,我设计了学生生活中常见的几种。抛出一些问题。让学生回答,以此来产生疑问进入课堂。所以就产生了分数。使学生体验到分数是因为生活的需要而产生的,数学来源于生活。

  动手实践、自主探索、合作交流是学生学习数学的重要方式,数学活动应当是一个生动活泼的、主动和富有个性的过程。教学中,我让学生通过动手实践、自主探索、合作交流,在这个过程中去体会“在表示分数时,有什么相同的地方?有什么不同的地方?”从而抽象概括出分数的意义。在这个过程中培养学生动手能力,增强自主探索与合作交流的意识,使学生乐学、会学、创造性的学习,培养学生创新的能力。

  学生是学习的主人,教师是数学学习的组织者、引导者和合作者。因此,在课堂上,我把一些问题引导出来,而后让学生以小组为单位进行组织学习。并且,在课上,充分发挥领袖学生的引导作用,自己走下去去帮助需要帮助的,及时为他们解决难题。

  总体上讲,这堂课还算成功,但是,在教学后也出现了一些问题,少数学生可能对于这一抽象的现象不能很好接受,因此,个别学生可能还摸不着头脑。如何在以后接手班级时更好的教学好《分数的意义》,还希望同行们能给我一些更好的见意。

《分数的意义》教学设计通用5

  一、教学内容:

  人教版教材五年级下册第45、46页(新授课)

  二、教材分析:

  三、学情分析:

  四、教学目标

  1、了解分数的产生,理解分数的意义。

  2、理解单位“1”的含义,认识分数单位,能说明一个分数中有几个分数单位。3、在理解分数含义的过程中,渗透比较、数形结合等数学思想方法,培养学生的抽象概括能力。

  五、教学重难点

  教学重点:理解分数的意义。

  教学难点:理解单位“1”,认识分数单位。

  六、教学准备

  教具:课件、彩色磁扣。

  学具:圆片、正方形和长方形纸片,一板面包图片(分格的),4根香蕉图片,一段绳子

  七、教法学法

  教法:创设情境法、操作发现法

  学法:合作交流法、自主探究法

  八、教学过程

  (一)情境引入(2分钟)

  (二)探究新知(14分钟)

  (三)探究求周长的策略(15分钟)

  (5)量一量、算一算

  A三角形、长方形等直边的测量方法。(3分钟)

  师:那么要想知道封闭图形一周的长度是多少,该怎么办?

  师:课前老师给每个小组准备一个学具袋,里面有一个封闭图形,下面四人小组想办法测量出它的周长,活动前请先阅读活动要求。

  小组合作:

  ①小组内快速交流用什么方法测量。

  ②选择需要的工具进行测量。

  ③组内分工合作。(测量时取整厘米数)

  反馈交流测量方法。

  ①三角形

  6+8+10=24cm

  师:那个小组愿意汇报?

  预设:我们测量的是三角形,测量工具是直尺,测量的方法是量,测量的结果约为24厘米。

  师:你们用直尺量出三角形三条边的长度,然后呢?(把三条边的长度加起来)那测量结果24厘米表示什么?

  预设:三角形三条边的长度总和。

  预设:三角形一周的长度。

  师:三角形一周的长度就是它的周长,三角形的周长是它三条边的长度和。(课件出示)

  ②长方形

  5+5+3+3=16cm

  师:昨天咱们刚刚学习过四边形,哪组来汇报一下四边形?

  预设:我们选择的图形是长方形,测量工具是直尺,测量的方法是量,测量的结果约为16厘米。

  师:16厘米这个长度表示什么呢?

  预设:表示长方形一周的长度,也就是长方形的周长。

  师:他们也选用了用直尺测量,量了几条边(四条边),然后再把它们加起来。

  师:有不同的意见吗?(长方形对边相等只需量两条边,一条长、一条宽)

  师:真棒!你们能根据长方形的特征简化测量过程。

  师:那如果想知道正方形的周长怎么做呢?

  预设:量一条边,就知道四条边的长度了。

  师:当然,不论量几条边,计算四边形的周长都是要把四条边的长度加起来?我们发现四边形的周长是它四条边的长度总和。

  思考:如果是五边形,它的周长是几条边的长度总和?六边形呢?八边形呢?

  交流后小结:看来多边形的周长就是它所有边的长度总和。

  B爱心、树叶等不规则图形的测量方法。(8分钟)

  ③树叶

  师:老师给有些小组准备了一片树叶。那个小组选择测量的是树叶的周长?1厘米大约是这么长,请同学们估估看这片树叶的周长大约是多少厘米?它的周长到底是多少呢?我们来听一听这个小组的汇报?

  预设:先用绳子沿着边线围一圈,在绳上做一个标记,然后把绳子拉直再用直尺测量,测量的结果约是9厘米8毫米。

  师:有不同的方法吗?

  预设:直接用软尺绕一圈可以直接测量出树叶一周的长度。

  师:太智慧了!为什么不用尺子直接量呢?

  预设:因为边是弯弯曲曲的。

  介绍滚动法:首先在树叶上作一个记号,然后在尺子上滚一圈,看滚到哪里,读出刻度也可以知道树叶的周长。滚动法也是把弯曲的边转化成直直的线段进行测量,也利用了化曲为直的方法。

  ④爱心

  学生汇报:测量工具是绳子,测量的方法是围、量,测量过的结果约是12厘米

  师:你们小组测量的是爱心。爱心的边也是弯曲的,说说你们用的什么方法测量的,为什么不用滚的方法?滚动法不能测量到凹陷的部分。

  师:同学们,经过探究合作和展示,要想得出封闭图形的周长有哪些方法?

  预设:直边的图形用尺子测量,曲边的图形用绳测法或者滚动法,化曲为直的方法

  师小结:没错,直边先量边长后计算,曲边化曲为直

  (6)揭示周长概念的本质

  师:回顾之前的学习,经过了这么多学习的感受,现在你认为什么是周长?

  预设:封闭图形一周的长度就是这个封闭图形的周长(完善板书)

  师小结:看来同学们对于周长已经理解了。周长,周长,周指一周,即封闭图形的一周,长就是长度,封闭图形一周的长度就是它的周长。

  设计意图:操作是智力的源泉,思维的起点,在经历摸一摸、量一量、比划、估一估的过程中,让孩子充分的操作,积累丰富的体验感受,不但可以使他们在操作过程中提高动手能力,而且容易把感性认识提高到理性认识,把通过实际操作得出的结论延伸、并进行合理的想象,这在培养学生对长度的感觉和估的能力的同时,进一步感受“周长”和长度的关联,能够将面和线区分清楚,体会周长概念的本质。

  (四)实践应用,拓展延伸(8分钟)

  1、增加干扰,强化周长

  (1)教材书84页的第3题

  下面每组图形的周长一样吗?你是怎么想的?

  师:请同学们仔细观察,下面两个图形的周长一样长吗?

  师:谁来说一说你是怎么比较的?

  师:通过移一移,我们把这个不规则的图形转化成规则的图形。然后比较发现他们的周长是(相等的)

  师:再来比较一下这两个图形的周长一样长吗?

  (2)教科书88页第8题

  师:(课件出示长方形)这是什么图形?老师把它分成甲乙两部分,观察比较一下,哪个图形的周长长?你是怎么想?

  预设:一样长,两个图形的周长都是一条长加一条宽,再加一条斜线。

  师:老师把这条边变弯曲,现在两个图形谁的周长长?

  预设1:甲的周长更长

  预设2:一样长

  师:你是怎么想的?

  预设:两个图形的周长都是一条长加一条宽,再加上公共的那条弯弯曲曲的边,所以这两部分的周长一样长。

  师:为什么一开始认为甲的周长长?

  师:哦!原来如此。周长是图形一周的长度,并非指图形的内部。

  小结:比较两个图形周长的时候,图形每条边的长度一样,它的周长就是一样的。

  (3)生活中的周长(机动内容)

  设计意图:通过练习设计进一步内化周长概念,学生在观察、交流的过程中进一步理解周长的本质。通过对比、辨析排除内部线段和面积的干扰。同时体会图形转化的方法。

  (五)归纳总结,内化新知(1分钟)

  师:通过这节课的学习,你有什么收获?

  同学们,今天我们初步认识了周长,知道了周长的概念,并且能够通过测量和计算得到图形的周长。希望课后同学们继续深入的研究周长。

  设计意图:让学生谈一谈自己的收获,是对本课知识的梳理和加深,从而让学生体验成功的快乐。

  九、板书设计

  认识周长

  封闭图形一周的长度是它的周长

  直边:量、算

  曲边:围、滚(化曲为直)

  十、设计理念

  在教学中,我们发现学生总是认为一周就是周长,故此我先让学生充分理解什么是“一周”,在此基础上,沟通一周和封闭图形之间的联系,然后通过学生的探究活动测量封闭图形一周的长度,并没有急于揭示周长的概念,而是让学生先在大量的活动体验中感知周长是可测量的一维图形,又在估的过程中进一步感知周长是图形边线的长度,只是存在于二维图形的面上,与面的大小无关,最后再由学生自己揭示周长概念。同时在这一系列的活动过程中培养学生的空间观念。

  1、创设生活情境引入,学生通过观察对比三种不同的路线,突出“沿着边线,绕回起点”两个重要特征,然后再指一指、说一说生活中物体表面的一周,建立学生对“一周”的表象认识,为后面理解周长概念的本质做铺垫。

  2、在小组合作的过程中,让孩子在探究测量周长方法的过程中,或测量或计算,充分体验、感受周长的本质就是长度,是可测量的一维图形。通过学生用线围曲边的一周,把边线取下来拉直、测量,帮助学生沟通一维图形和二维图形的联系,即周长是从面里脱离出来的线段,深刻体会周长概念的本质,学生的空间观念也在这个过程中不断地得到发展。

  3、当学生利用充分的时间和空间完成了量一量的活动之后,再让他们观察三个图形的大小以及周长,去摸一摸,经过想象、比划以及之前的经验有条理的思考和推理、比较出三个图形的周长与什么有关,再次经历从二维图形中抽象出一维图形“线段”这个过程,最后通过教师化曲为直的验证,从而探索周长的性质,理解周长的本质就是线段的长度,积累了这样的实践经验和思维经验,获得贤明、生动形象的认识,进而形成表象,发展空间观念,为今后学习中区分清楚二维图形的“面积”和一维图形的“长度”打下坚实的基础。

  4、在整节课每一次活动体验后,我都让学生描述、概括自己体验的感受和想法,通篇培养学生空间描述的能力。

  十一、教后反思

  1、以活动为基础来理解周长的含义

  新课开始,让学生观察动画,初步感知边线,使学生体会图形一周的长度必须从起点开始绕边线一圈再回到起点,这样就把握住了周长概念的基本点。再通过学生动手描一描平面图形的一周,指一指具体物体某一个面一周的长度从而对周长的概念有了准确的理解,进而让学生讨论是不是所有的平面图形都有周长使学生体会到平面图形的周长的“封闭”观念,学生通过动手做悉心理解,加强感受,把生活中对边线的零星感受进行再现和体验。事实也证明学生通过这一过程,很多学生能充分理解周长所蕴含的真实意义。

  2、以周长测量策略探究来内化周长的意义.

  学生通过小组合作的形式运用准备的学具——尺子、线想办法量算出封闭图形和树叶的周长,然后汇报演示。出现两种情况一是图形的边是直线时可以用量、算的方法求出它的周长。而是图形的边是曲线时可以用绕,量的方法求出它的周长。深刻体会到解决问题策略的多样化,特殊问题有特殊的解决办法,让他们充分体验自主解决问题的快乐,享受成功的喜悦,有利于他们形成良好的数学认知结构。另外,汇报演示时的师生交流,生生互动虽然还没有做到很好,但还算达到了预期效果,让学生的知识和能力得到了同步发展,有利于全面提高学生的整体素质。

  3、辨析中深化

  周长只能用于二维图形上,它和面积总是同时出现在一个物体上的,所以它们是两个易混淆的概念。认识周长不能只孤立地认识周长,应该将其与面积进行区别。课尾设计的两道练习都是帮助学生深化理解周长的概念。在对比中发现不同,明析周长概念的内涵。

  总之,概念课让学生真实地经历概念发生、发展的过程,才能让学生学得明白。我们将学生的经验水平改造为老师的学科水平。只有老师想的明白,学生才会学得明白。

《分数的意义》教学设计通用6

  单元教材分析

  本单元是在学生学习了整数乘除法以及解简易方程,学习了分数乘法知识的基础上,学习分数除法和比的初步知识。这些知识为学生学习分数除法打下了基础,学习本单元的知识对加深学生对计算方法的理解和提高学生的计算能力有很好的作用。教材内容包括:分数除法,解决问题,比和比的应用。这些知识都是学生进一步学习的重要基础,通过本单元的学习,学生一方面基本上完成了分数加,减,除的学习任务,比较系统地掌握了分数四则运算;另一方面又开始了比的初步知识的学习,为后面学习百分数和比例提供了基础。两方面的收获,都将在进一步的学习中发挥重要的作用。

  单元教学目标

  1、使学生在具体情景中,感知分数除法的意义,掌握分数除法的计算方法,能正确地用口算或笔算的方法进行分数除法的计算。

  2、使学生学分用分数除法来解决已知一个数的几分之几是多少,求这个数的实际问题。

  3、理解比的意义和比的基本性质,知道比与分数,除法之间的关系,能正确地求比值和化简比,能运用比的有关知识解决实际问题。

  4、让学生在具体生动的情景中感受学习数学的价值。

  单元教学重点

  1、分数除法的计算;

  2、分数除法问题的解答;

  3、比的意义和基本性质的理解与运用.

  单元教学难点

  1、理解分数除法计算法则的算理;

  2、比的应用.

  1、分数除法

  教学目标

  1、理解分数除法的意义,指导并初步掌握分数除以整数的计算法则,能正确地计算分数除以整数。

  2、使学生理解整数除以分数的算理,掌握一个数除以分数的计算方法,能正确地进行一个数除以分数的计算,并培养学生的推理归纳能力。

  教学重点

  1、理解分数除法的意义与整数除法的意义相同。

  2、学会分数除以整数的计算法则,并能应用法则正确计算。

  3、一个数除以分数的算理。

  4、掌握分数除法的统一法则。

  教学难点

  1、学会分数除以整数的计算法则,并能应用法则正确计算。

  2、引导学生推导出整数除以分数的方法。

  3、对于一个数除以分数的算理的理解。

  第一课时分数除法的意义和分数除以整数。

  教学过程:

  一、创设情景导入:

  同学们,前面我们学习了分数乘法,掌握了它的意义和计算法则,并用它解决了相应的实际问题。这节课开始老师将和你们一起去逐步探究分数除法的意义和计算法则,还要解决相应的实际问题。本节课我们先探究分数除法的意义和分数除以整数。

  二、新知探究:

  (一)分数除法的意义

  1、出示例1的教学挂图,让学生看图观察图意,指名口答图意和应该怎样列式

  2、你能把上面的问题改编成用除法计算的问题吗?(学生独立思考,口答问题和列式)

  3、100g=1/10kg,你能将上面的问题改成用kg作单位的吗(引导学生将整数乘除法应用题改变成分数乘除法应用题)

  4、引导学生观察比较整数乘除法的`问题和改写后的问题,分析得出整数除法和分数除法的联系以及分数除法的意义

  5、练习:课本28页做一做.学生独立练习,订正时让学生说明为什么这样填

  (二)分数除以整数

  1、小组学习活动:

  问题⑴把一张纸的4/5平均分成2份,每份是这张长方形纸的几分之几?

  问题⑵把一张纸的4/5平均分成3份,每份是这张长方形纸的几分之几?

  [活动要求]

  ①先独立动手操作,再在组内交流,

  ②讨论:通过折纸操作和计算,你发现了几种折纸方式,每种方式应怎样列式计算?你发现了什么规律?

  2、汇报学习结果:

  3、学生独立阅读教材

  4、归纳总结:这节课你们学会了什么?

  指导学生归纳出:分数除以一个不等于0的整数,等于分数乘以这个整数的倒数

  三、巩固与提高

  ①把7/8平均分成4份,每份是多少?什么数乘6等于3/17?

  ②如果a是一个不等于0的自然数,1/3÷a等于多少?1/a÷3等于多少?你能用一个具体的数检验上面的结果吗

  四、课后作业

  练习八第1、2、3题

  五、板书设计:

  分数除法的意义和分数除以整数

  例1、100×3=300(ɡ)1/10×3=3/10(㎏)

  300÷3=100(ɡ)3/10÷3=1/10(㎏)

  300÷100=3(盒)3/10÷1/10=3(盒)

  例2、4/5÷2=4÷2/5=2/54/5÷2=4/5×1/2=2/5

  4/5÷3=4/5×1/3=4/15

《分数的意义》教学设计通用7

  教学内容:

  义务教育五年制小学数学第八册分数的意义。

  义务教育六年制小学数学第十册分数的意义。

  教学目标:

  1、使学生知道分数的产生和其它数学知识一样是由人类的生产和生活实际中产生的。

  2、使学生理解分数的意义和单位“1”的含义及分子、分母的含义。

  3、培养学生形象思维,抽象概括能力和初步的逻辑思维能力。

  4、使学生受到初步的辨证唯物主义观念的启蒙教育。

  教学重点与难点:

  让学生理解分数的意义是本节课的重点,讲清单位“1”的含义是本节课的难点。

  教具准备:

  电脑软件一套。

  学具准备:

  每人一张正方形纸片、每组一个信封里面装有一张圆形、长方形纸片,4个苹果图片,6个玩具熊猫图片。

  教学过程:

  课前组织教学

  今天我们和许多小动物一起去参加小猴的生日聚会高兴吗?你们看小猴准备了许多好吃的、好玩的东西(电脑显示画面)请同学们观察一下都有什么?它还想测测同学们的智力利用课堂上所学的知识帮它分一分、算一算能做到吗?(上课)

  一、分数的产生

  在日常生活中,人们在进行测量和计算的时候,有时不能得到整数得结果,例如,用一个计量单位“米”测量黑板的长度(屏幕显示)量了3米后,剩下的一段不够1米了,还能用整数表示吗?又如,老师只有一个苹果要平均分给两个小朋友,每个小朋友分得多少个/还能用整数表示吗?这就需要用新的数,谁知道用什么数来表示?

  板书:分数

  对于分数同学们并不陌生,在三年级的时候我们已经初步认识过谁能说几个分数(指名说老师板书),谁还记得分数各部分的名称是什么?

  到底什么样的数叫分数呢?分子、分母各表示什么意思呢?这节课我们就来进一步学习分数的意义,板书:的意义

  二、分数的意义

  1、把小猴准备的一部分礼物装在信封里,倒出来看一看都有什么?下面小猴要利用这些东西测测同学们的智力,看哪一个小组表现的好?听要求小组同学研究想办法表示出每种东西的。小组研究汇报。

  2、根据刚才分的过程,把这些物体归两类,为什么这样分?

  根据学生的回答板书:一个物体、一个整体(解释整体的含义)。

  说明一个物体、一个计量单位或许多物体组成的整体都可以用自然数1来表示,通常叫做单位“1”

  上面我们分的这些物体就可以用一句话表示出来谁能说出来?(把单位“1”平均分成两份,每份是它的)

  3、请同学们看屏幕,仔细观察回答问题

  (1)把一块饼平均分成两份,每份是它的()。

  (2)把一张正方形的纸平均分成4份每份是它的(),其余的3份是它的()。

  (3)把一条线段平均分成5份,每份是它的()其余的是它的()。

  (4)同时显示以上3幅图,让同学们认真观察它们的分法和表示每一部分的分数有什么异同?小组讨论汇报。

  4、请同学们拿出准备好的苹果和熊猫图片,平均分看有几种分法,其中的一份用什么数表示,小组讨论汇报,电脑显示平均分的苹果和熊猫图画,让学生按照第一幅图的说法说一说其余的几幅图的意思。

  5、电脑同时显示一块饼、一张正方形纸、一条线段、四个苹果、六只熊猫图,提问:刚才我们分了这些物体都是把谁看作单位“1”?谁来说一说什么叫做单位“1”?电脑显示单位“1”的含义。

  6、根据刚才所学的知识小组讨论到底什么样的数叫做分数呢?引导学生总结分数的意义,电脑显示分数的意义。

  7、根据分数的意义指名说出刚才写的这些分数表示的意义。

  8、教学分子、分母的含义:电脑显示分数各部分的名称,指名回答分子、分母各表示什么?写几个分数让学生说出分子、分母所表示的含义。

  9、做一做:电脑显示。

  三、课堂练习:

  1、让同学们闯三关,电脑显示三关题。

  2、三关闯过了,别忘了还要帮小猴分东西呢,苹果、熊猫已分过,还有西瓜和蛋糕,看小狗分西瓜(电脑显示)学生回答。提问:如果小狗把西瓜平均分成8块,小猴吃了3块,吃了西瓜的几分之几?小兔吃了2块,吃了几分之几?还剩下西瓜的几分之几?

  分蛋糕,蛋糕上有四朵小花、12支蜡烛,平均分成4份,每份都能用来表示,但是这个所表示的数量一样多吗?为什么?

  四、课堂小结:

  这节课你学会了什么?

  五、板书设计:

  分数的意义

  一个物体

  一个计量单位单位“1” 2/3 4/15 5/11

  一个整体

  把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

《分数的意义》教学设计通用8

  教学目标:

  1、在现实情境中认识百分数,理解百分数的意义。

  2、会正确读、写百分数。

  3、感受百分数在现实生活中的价值,增强学好数学的信心和乐趣。

  学习目标:

  1、能说出百分数表示的具体含义。

  2、理解百分数的意义。

  3、会正确的读写百分数。

  教学重点

  百分数的意义和读、写法

  教学难点

  百分数与分数的联系和区别。

  教学准备:

  多媒体课件

  教学过程:

  一、创设情境,激发探究欲望:

  师:课下布置了一项任务,请同学们查找百分数的资料了,你们找到了吗?谁来说一说是在哪儿找到的。

  生1:我是从报纸上找到的。……较年初增长15.5%…

  师:这位同学找到这么多的百分数。老师这里有一组数据,哪位同学读一读。

  教师出示:课件出示。

  指名学生读

  师:同学们能在生活中找到这么多的百分数,说明了什么?

  生:说明百分数在生活中应用的非常普遍。

  师:我们今天就来共同研究百分数。

  (板书:百分数)

  师:通过刚才交流大家收集到的资料,老师发现同学们虽然还没有学过百分数,但已经会读百分数了。除了会读百分数以外,你们还想知道有关百分数的哪些知识呢?

  生1:我还想知道百分数怎样写。

  生2:百分数和小数怎样互化?

  生3:百分数和分数有什么区别?

  师:这几位同学都跟以前的知识进行了联系,想法非常好。

  生4:我想知道百分数的意义是什么?

  师:知道了百分数的意义,我们是不是应该了解一下百分数用途和好处呀?

  教师板书:百分数的意义、用途、好处、与分数的异同。

  二、尝试探究,解决问题:

  1、自学课本,解决问题。

  师:请同学们自己看书P77——78的内容,边看、边画、边想,通过看书自学,看你能了解到哪些有关百分数的知识?

  学生自学课本。汇报交流:

  师:通过自学,你们解决了哪个问题??

  生1:我解决了百分数的意义,百分数表示一个数是另一个数的百分之几,百分数也叫百分率或者百分比。

  指名学生再说一说,学生齐读百分数的意义。

  教师板书:表示一个数是另一个数的百分之几,又叫百分率或百分比。

  2、举例验证,解决问题

  A:课件出示课本上的例子并说明含义。

  B:师老师去超市买了这两种饮料回来,让你选,你喜欢喝哪种?为什么?

  出示:课件。

  生:我会选农夫果园,因为虽然它的价格比较高,但是它的果汁含量也高。

  师:那果汁含量表示的是什么?

  生:就是纯果汁占这瓶饮料的百分之几。

  师:也就是说,我们把整盒饮料看作是100份,果汁就是其中的30份,也就是果汁占整瓶饮料的30%。

  生:就是我们把整瓶饮料看作100份,果汁是其中的30份,所以果汁占整瓶饮料的30%。

  师:果汁含量10%表示什么意思?

  生:把整瓶饮料看成100份,果汁就是这100份中的10份,也就是整瓶饮料的10%。

  C:师:我还有两件毛衫,一件羊毛含量95.3%,一件羊毛含量32%,现在这个天气你建议我穿哪件?

  教师出示:

  生:我觉得应该穿第一件,因为它的羊毛含量高。

  师:羊毛含量95.3%表示什么意思?

  生:表示把整件衣服看成100份,里面的羊毛占95.3份,羊毛就占整件衣服的95.3%。

  师:那32%又表示什么?

  生:把整件衣服看作100份,羊毛就是其中的32份,所以羊毛就占整件衣服的32%。

  师:同学们真了不起,已经会运用我们所学的百分数来分析实际问题了。

  3、联系实际,教学百分数的写法,解决百分数与分数的区别

  教师出示:

  师:老师这儿有三杯糖水,你在这幅图上能看出哪杯糖水甜?

  生1:我感觉应该是第三杯,因为第三杯颜色比较浓,第二杯明显的加了不少水。

  生2:我觉得第一杯比较浓。

  师:只是在猜哪一杯甜,要想真正比较出来是不是需要数据呀?

  师:(出示1、2、3号杯,第一杯糖13克,糖水25克;第二杯糖27克,糖水50克;第三杯糖11克,糖水20克)现在我给大家提供一组数据,请你们四人小组研究研究,把你们比较的过程写下来。

  四人小组自主探究,汇报交流。

  生1:第一杯糖水减去糖得出水是12克,第二杯,水23克,第三杯,水9克,因为水越少就越甜,9﹤12﹤23,所以第三杯甜。

  生2:我先化成分数,13/25、27/50、11/20,也就是比较一下这三个分数的大小就可以了。13/25=52/100、27/50=54/100、11/20=55/100,所以第三杯水最甜。

  师:还有其他方案吗?

  生3:把糖水变成100克,第一杯蜜就是52克,第二杯糖就是54克,第三杯就是55克,这样我们就可以看出,一号杯糖占糖水的52/100,二号杯糖占糖水的54/100,三号杯糖占糖水的55/100。所以三号杯甜。

  师:这个小组的方案和刚才那个小组的方案一样吗?是不是都在求糖占糖水的几分之几?

  师:大家同意哪一种方法呢?(大部分同意第二种方法,但解释不清第一种方法的症结)

  师:第一种方案的问题出在哪儿呢?(学生陷入了沉默)

  教师举例:如果有第四杯糖水,其中糖1克,糖水2克,按照生1的想法,2-1=1,和刚才三杯相比,是不是这杯更甜呢?大家来看,其他三杯糖都超过了糖水的一半,第四杯糖正好是糖水的一半,所以第四杯不是最甜的。看来解决这类问题时不能只是单纯的求出差就行了,我们可以像刚才那些同学说的,要求糖占糖水的几分之几。

《分数的意义》教学设计通用9

  教学内容:

  人教版小学数学五年级下册《分数的意义》

  教学目标:

  1、在具体的情境中了解分数的产生,会用分数表示生活中的事物。

  2、通过动手操作、观察、比较、探究等学习活动,归纳、整理并理解分数的意义,理解单位“1”,明确分数单位。

  3、通过一系列的数学活动学生获得成功、愉悦的情感体验,并感受到生活中处处有分数,培养学习数学的兴趣。

  教学重点:

  学生理解分数的意义和分数单位,弄懂单位“1”。

  教学难点:

  理解单位“1”的含义

  教学过程:

  一、导入:回顾旧知,引入新课(2分钟)

  出示:1/3 2/5 7/10

  师:老师黑板出示了三个分数,记得在三年时我们初步认识了分数。现在让我们一起把这三个分数读出来。(生齐读)

  师:同学们,除了会读,还记得哪些分数的知识?

  (生汇报)

  师:同学们对分数已经有了初步的了解,但是关于分数的知识还有很多,这节课我们就来进一步学习有关分数的知识。(教师板书课题:分数的意义)

  二、交流预习,明确任务(3分钟)

  师:老师知道我们班同学都爱学数学,因为数学里埋藏着好多奥秘,数学是一个藏金的宝藏。不知道你们在昨天的预习中挖出了什么宝贝?先让我们来交流一下预习情况。或说出你收获了哪些知识,或提出需要进一步探究的问题。

  (学生汇报,教师适当提炼板书)

  师:大家真的用心预习了,找出了本课的知识点。下面就让我们来深入地学习。

  三、新授:自主学习、探究新知(20分钟)

  1、联系实际,了解分数的产生、发展

  师:我们已经知道分数是由于人们生产、生活的实际需要产生的,如测量、分东西、计算等。你能举例子说一说在我们的周围什么时候需要分数吗?

  (学生观察,交流)

  师:同学们看到了,生活中处处有分数。然而,我们今天使用的分数它却走过一段及其漫长的旅程。让我们具体了解一下,课件出示。

  (一)初步概括分数的意义

  请同学们拿出已经准备的长方形纸、正方形纸、圆形纸、线段图。动手折一折,涂一涂,表示它的1/4。

  引导学生初步概括分数的意义(分数是把一个物体平均分成若干份,表示这样的一份或几份的数)。

  (二)、更进一步理解分数的意义。

  1、理解单位“1”

  我以组词游戏的形式引出单位“1”。

  课件出示一个苹果(1个苹果)

  再出示两个苹果(1双、1对)

  4个苹果呢?(1组、1盘、1斤)

  24个苹果呢?(1箱)

  小结:通过刚才的小游戏我们发现,自然数“1”不仅可以表示1个物体,还可以表示多个物体。我们把这些多个物体也看作了一个整体。这个整体我们通常把它叫做单位“1”。

  2、感悟分数的意义

  课件演示把这一箱苹果打开,再把这24个苹果看作是一个整体,把它平均分成4份,取其中的一份可以用1/4表示。

  通过我们观察折一折、涂一涂的活动和分苹果活动,请同学们认真观察以上的表示过程,说一说有什么相同的地方,有什么不同的地方。

  (1)相同点:都表示1/4。

  (2)不同点:有的用长方形纸表示、有的用正方形纸表示、有的用圆形纸表示、有的用线段表示、有的用24个苹果表示。

  指着黑板与学生沟通:请同学们静下心来想一想:分数是什么呢?从而概括出(分数是把一个物体、一些物体平均分成若干份,表示这样的一份或几份的数。)

  3、学习分数单位

  课件出示教科书46页做一做的练习题

  通过练习让同学们,认识当我们把单位“1”平均分成若干份,表示其中的一份的数叫分数单位。

  四、巩固反馈,拓展提高

  练习十一的第1、2、3、4题。

  五、课堂小结

  本节课你学习了哪些知识,你有哪些收获?

  资源文件列表:

《分数的意义》教学设计通用10

  教学目标

  1、了解分数的产生,让学生理解单位“1”不仅是一个物体,许多物体也可以看成单位“1”。

  2、学生能掌握单位“1”平均分成若干份,表示其中一份或者几份的数,叫分数。

  3、能用分数表示部分与整体的关系

  4、学生能知道某一个量是整体的几分之几。

  情感态度与价值观:体会数学在日常生活中的应用。

  教学重点:

  使学生理解"分数"的意义,弄清分母,分子及分数单位的含义.

  教学难点:

  使学生理解"分数"的意义,弄清分数单位的含义.

  教学准备:课件

  教学过程

  一、板书课题:同学们今天我们一起来学习分数的意义。

  二、揭示目标:这节课的目标是什么呢?请看:(出示学习目标),这个目标能当堂达到吗?:

  三、自学指导:请同学们打开书第45-46页,认真看课本内容边看书,并思考以下问题

  1、什么情况下用分数表示。

  2、分数四分之一表示什么

  3、什么叫单位“1”

  4、什么是分数单位?

  五分钟后比一比,谁自学最认真,谁能做对检测题。

  四、先学

  一)看书(看一看)

  学生看书自学,教师巡视,确保每一名学生都在紧张的自学。

  (二)检测(做一做):

  1、完成课本46页做一做,指明学生板演,其余学生做练习本上。(要求字写的大小适中,字体端正。)

  2、教师巡视发现错例,准备二次备课。

  五、后教

  (一)更正:

  观察黑板上的题,发现错误的进行更正。(不同颜色的粉笔)

  1、看做一做的第1空,若对,问:认为对的举手?为什么?若错,问:为什么错了?

  2、看做一做的第2空,若对,问:认为对的举手?为什么?若错,问:为什么错了?

  3、看做一做的第3空,若对,问:认为对的举手?为什么?若错,问:为什么错了?

  4、看做一做的第4空,若对,问:认为对的举手?为什么?若错,问:为什么错了?

  通过刚才的解答,我们可以看出,(总结)一堆糖可以看作是一个整体,可以把这个整体平均分成若干数,所以分数单位也不相同。(学生一分钟时间记忆)

  六、课堂小结

  今天我们学习了分数的意义,知道了一个物体或一些物体可以看作单位1,把这个整体分成若干份,这样的一份或者几份可以用分数来表示。一个整体可以用自然数1来表示,通常把它叫做单位“1”。(学生记忆并板书)

  七、当堂训练

  1、课本63面练习十一第1、2、3题。(必做题)

  2、有三个小盒里面装有小棒,我从第一个小盒中拿出一根小棒,这一根小棒是这个整体的五分之一,我从第一个小盒中拿出二根小棒,这二根小棒是这个整体的五分之一,我从第一个小盒中拿出三根小棒,这三根小棒是这个整体的五分之一。你能猜出每个盒子里面原来有几根小棒吗?那你能不能说一说这三个五分之一有什么相同点和不同点吗?(思考题)

  八、板书设计

  分数的意义

  一个物体或一些物体可以看作单位1,把这个整体分成若干份,这样的一份或者几份可以用分数来表示。

  一个整体可以用自然数1来表示,通常把它叫做单位“1”。

  《分数的意义》教学反思

  本课教学的重点就是分数的意义。考虑到如果让我自己概括分数的意义,概念中“一份”我也会把它纳入到“几份”中去,让学生自主、完整地概括出这一概念几乎不可能。因此我主要是引导学生回顾前面各个分数的产生,使学生在回顾的过程中感受、理解、提炼出分数意义的模型,结合教师的板书补充,逐步形成分数的意义。而对于分数单位的教学,我是在分数的意义教学之后,让学生通过看书,再通过尝试回答,去理解。在多次回答“它的分数单位是多少?它里面有几个这样的分数单位?”之后,学生势必会有一些发现,再请学生概括出分数单位、分数单位的个数与分数分子、分母的关系,使学生在数学技能方面得到发展。

  在设计练习时,我着重围绕本课重点既分数意义的理解进行安排,既安排了完成书本上的习题,也设计了一道综合性、生活化、渗透数学思想的习题。首先是让学生在具体的实际生活问题中理解把哪个量看作“单位1”,深化对分数意义的理解;其次是使学生感受到同一个分数,“单位1”的量变化,所对应的数量也随之变化。并引导学生通过观察,感受到“单位1”的量的变化是如何影响分数所对应的数量的变化的。二是发展学生数感,培养学生的估计能力,其实也渗透深化学生对分数意义的理解。三是渗透数学思想,极限的思想。引导学生在现实的问题情景中,通过想象,体会到“日取其半,万世不竭”。学生数感的发展需要专项的训练,但更需要教师课堂教学进行长期的、适时地渗透进行,数学思想、数学文化更是如此。这不是一蹴可就的,而是一个长期的、潜移默化的过程。

  但是回顾整课的教学,还是存有一些遗憾。比如一些细节上处理还是不够好。在新授部分将许多物品作为整体呈现时还是需要用一些符号使学生深入感受到将它们看作一个整体,在学生看书过程中缺少必要的引导和指导。还有就是练习的量还是较少,学生在技能层面发展不够。

《分数的意义》教学设计通用11

  一、教学内容:

  青岛版小学数学四年级下册教材第67-69页。

  二、教学目标:

  1、使学生在初步认识分数的基础上,理解分数的意义,掌握分数单位的含义。

  2、通过分数意义的学习,培养学生动手操作,观察、思考、抽象概括的能力。

  3、使学生体会到分数就在我们身边,运用分数可以解决生活中的实际问题,从而增强学生学习数学的兴趣。

  三、教学重点:

  理解分数的意义

  教学难点:认识单位“1”和概括分数的意义

  四、设计理念:

  本课的教学设计注重学生的认知规律,关注学生的生活经验,让学生在做数学中体验分数的价值,激发学习的兴趣,培养良好的数感。

  《数学课程标准》指出:“让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。”为了比较完整的建立起分数的概念,利用学生已有对分数的初步认识已有的知识为基础,提供平台让学生举例说明分数的含义,让学生在合作、探究中主动获取知识,找到把许多物体组成的一个整体平均分与把一个物体平均分之间的内在联系,抽象概括出分数的意义,并强调了单位“1”的概念,揭示了分数表示部分与整体的关系。

  五、教具准备:

  课件、圆形纸片、正方形纸片、卡纸。

  六、教学过程:

  (一)创设情景,激趣导入

  1、师:有4只猴子,它们摘了8个桃子,需要平均分着吃,你觉得怎么分?每只猴子分到多少个?

  2、师:后来,它们又得到一个大西瓜,也需要平均分着吃,应该怎么分?每只猴子分到多少个?

  3、引出1/4这个分数。

  (二)、探究新知

  1、认识单位“1”。

  (1)动手操作。

  师:如果用图表示1/4,可能你们每人会有不同的表示方法,现在请你动手利用手中的小纸片通过折一折、画一画来表示1/4。学生先分小组合作,后汇报展示成果。

  (2)师投影出示图片。(P61页下方的香蕉图和面包图)

  师:投影片上的这些图,你能在每一幅图上表示出它的1/4吗?学生先小组内交流,再集体反馈。

  A:把4根香蕉看作一个整体,一根香蕉是这个整体的1/4。

  B:把8个面包看作一个整体,平均分成4份,每份两个面包是这个整体的1/4。

  (3)概括总结。

  师:刚才同学们在表示1/4的过程中,有什么发现吗?

  学生甲:都是把物体平均分成4份,表示这样的一份。

  学生乙:我发现有的是把1个图形平均分,有的是把一把香蕉、8个面包平均分。

  师:一个图形比较好理解,我们把它称为一个物体,那么4根香蕉8个面包是由许多单个物体组成的,我们称作一些物体。一个物体,一些物体都可以看作一个整体,一个整体可以用自然数1来表示,通常把它叫做单位“1”。

  (4)举例。

  师:对于这个整体,你还能想出其他的例子吗?

  学生:这个整体还可以是一个苹果、一盒粉笔、一个班级的学生人数、全校学生数、全中国人口、全世界人口等。

  2、概括分数意义。

  (1)概括意义。

  师:通过上面的学习,同学们对于单位“1”有了一个全新的认识,可以表示一个物体、也可以表示一些物体。整体“1”可以很小,也可以很大……刚才同学们举了很多分数的例子,那么到底什么是分数,你能尝试用文字描述一下吗?

  先引导学生交流:把“谁”平均分?它表示的是一个什么样的数呢?

  学生试说,教师相机板书。

  板书:把单位“1”平均分成若干份,表示这样一份或几份的数,叫分数。

  强调必须是平均分。

  揭示课题:分数的意义。

  (2)教学分数各部分的名称.

  学生一边回答,教师一边板书:

  3……分子

  —……分数线

  5……分母

  学生:分母表示平均分的份数,分子表示有这样的多少份。

  3.学习分数单位。

  (1)投影出示。

  一堆糖,平均分成2份,每份是这堆糖的()/()。

  平均分成3份,2份是这堆糖的()/()。

  平均分成4份,3份是这堆糖的()/()。

  平均分成6份,5份这堆糖的()/()。

  (2)小组合作,动手操作。

  学生用小塑料方块表示糖块,动手分一分,然后把结果填在课本上。

  (3)集体订正。

  请学生说出1/2,2/3,3/4,5/6分别表示什么意思:

  (4)引导学生明确分数单位的意义。

  师:1/2表示什么意思:(表示把单位“1”平均分成2份,表示这样的一份。)谁是单位“1”。(这堆糖是单位“1”。)表示什么意思?(表示把单位“1”平均分成3份,表示这样的2份。)谁是单位“1”?(还是这堆糖是单位“1”。)

  师引导学生发现:1/2,2/3,3/4,5/6这些分数的分母分别是2,3,4, 6……表示什么意思?(表示把单位“1”平均分成的份数。)分子又表示什么意思?(表示这样的一份或者几份。)

  讲述:回想一下:自然数有哪些计数单位?346里包含哪些计数单位?分数也有计数单位,是什么你想知道吗?

  师讲解边板书:把单位“1”平均分成若干份,表示这样一份的数就是分数的分数单位。如,2/3的分数单位是1/3。

  老师指明说出黑板上其它分数的分数单位。

  小组内交流说一说自已写出的另外三个分数的分数单位。

  (5)发现分数单位的特点。

  师:你们发现这些分数的分数单位有什么特点?(它们都是几分之一。)为什么?(因为分数单位是把单位“1”平均分成若干份,表示这样一份的数就是分数单位。)

  说一说黑板上这些分数分别有几个这样的分数单位。

  (三)、巩固练习

  1、自主练习第1、2、3题

  2、自主练习第5、8题

  (三)课堂小结

  今天,我们一起学习了哪些内容?你有什么收获?

  (四)作业设计

  和同学们说说在生活中见过的分数,并说出每个分数的分数单位。

《分数的意义》教学设计通用12

  一、教学目标

  (一)知识与技能

  通过整理和复习,帮助学生巩固对分数的意义、基本性质以及分数加减法的认识理解,提高学生对这些知识的掌握水平,增强知识的运用能力。

  (二)过程与方法

  结合整理和复习,回顾学习过程和方法,体会将知识条理化的作用,逐步养成整理和反思的习惯。

  (三)情感态度和价值观

  培养学生良好的学习习惯,增强学习数学的兴趣和信心。

  二、教学重难点

  教学重点:分数的基本性质。

  教学难点:分数的意义,分数的加减法运算的算理、算法。

  三、教学准备

  多媒体课件。

  四、教学过程

  (一)知识整理,整体回顾

  1、知识梳理。

  教师:关于分数,本学期我们学习了哪些知识?你能说一说、写一写吗?

  (1)学生在自己的本子上写一写,组内交流。

  (2)学生汇报,老师补充并同时在黑板上整理,形成下图。

  设计意图:总复习是对一个学期所学知识的全面整理和巩固,帮助学生梳理知识,形成完整、系统的知识网络。这样既有利于学生更好地理解和掌握已学的知识内容,也有利于培养学生良好的复习整理习惯。

  2、概念回顾。

  (1)复习分数的意义。

  教师:分数的意义是什么?

  学生:一个整体可以用自然数1来表示,我们通常把它叫做单位“1”。把单位“1”平均分成若干份,这样的一份或几份可以用分数表示,表示其中一份的数叫分数单位。

  教师:单位“1”与分数单位有什么不同?请举例说明。

  学生:把一块月饼平均分给5个同学,每位同学分到这块月饼的。这块月饼就是单位“1”,就是分数单位。

  教师:分数与除法有什么关系?

  (2)复习真分数和假分数。

  教师:什么是真分数和假分数?

  学生1:分子比分母小的分数叫做真分数,分子比分母大或分子和分母相等的分数叫做假分数。

  学生2:真分数小于1,假分数大于或等于1。

  学生3:假分数可以转化为整数或带分数。

  (3)复习分数的基本性质。

  教师:什么是分数的基本性质?它与什么相似?

  学生:分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。它与商不变性质相似。

  教师:如果的分子加6,要使分数的大小不变,分母应该怎么办?为什么?

  学生:分母应该加16,因为分子加6之后扩大到原来的3倍,分母也要相应地扩大到原来的3倍,所以应该加16。

  (4)复习约分和通分。

  教师:什么叫约分?什么叫通分?它们分别有什么作用?

  学生1:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。约分可以把一个分数化成最简分数。

  学生2:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。通分便于比较异分母分数的大小,也便于异分母分数相加减。

  教师:什么是最简分数?

  学生:分子和分母只有公因数1,这样的分数叫做最简分数。

  (5)复习分数和小数的相互转化。

  教师:分数如何化成小数?小数如何化成分数?

  学生:分数化小数,可以用分子除以分母,除不尽按要求取近似数;小数化分数,一位小数就是十分之几,二位小数就是百分之几……

  教师:怎样的最简分数可以化成有限小数?为什么?

  学生:如果分母中除了2和5以外,不含有其他质因数,这个分数就能化成有限小数。因为分母只含有质因数2和5,可以通过分数的基本性质把分子、分母同时乘若干个2或5,使分母变成整十或整百、整千等,一定可以化成有限小数。

  (6)复习分数的加减法。

  教师:分数的加减法运算要注意什么?

  学生:要先把异分母分数化成同分母分数,计算结果要化成最简分数。能简算的要简算。

  设计意图:通过对概念的回顾与复习,可以加强知识间的联系。通过问答的形式帮助学生更好地理解与记忆分数的意义和性质、分数的加法和减法的相关内容。例如,约分与通分既有联系又有区别,它们都是依据分数的基本性质,保持分数的大小不变;它们的区别在于,约分只对一个分数进行,而通分至少要对两个分数进行。再比如,利用分数与除法的关系,既可以将假分数化成带分数,也可以解决分数化小数的问题(分数化小数既可以利用分数与除法的关系,也可以利用分数的基本性质)。

  (二)应用拓展,发展技能

  1、分数的意义与性质练习。

  (1)分数单位是的最简真分数有();分子是3的假分数有(),其中最大的是(),最小的是()。

  (2)把一条6米长的绳子平均分成8段,每段长()米,每段是全长的()。

  (3)()÷()=0.6=()÷35。

  (4)用直线上的点表示下面各数,估计一下哪个更接近2。

  (5)先填空,再把各数按照从小到大的顺序排列。

  (6)下面哪些数是最简分数,哪些数不是最简分数,把不是最简分数的化成最简分数。

  设计意图:第(1)小题至第(6)小题是关于分数的意义和性质的综合练习,其中第(4)小题用数轴上的点表示数,有助于进一步理解分数与小数的联系,并通过估计培养学生的数感;第(5)小题既能帮助学生复习分数的基本性质,还涉及分数的大小比较,其中与的大小比较需要学生选择合适的策略,是对学生思维灵活性的考查。

  2、分数的加减法练习。

  设计意图:同时出现同分母分数加减法、异分母分数加减法以及加减混合运算,旨在帮助学生切实理解同分母分数加减法、异分母分数加减法的联系和区别。如果时间允许还可以适当增加简便运算的练习,提高学生计算的熟练程度和技巧。

  3、拓展练习。

  (1)为帮助四川地震灾区的小朋友,小红捐献了自己压岁钱的,小刚捐献了自己压岁钱的,小刚捐的钱一定比小红多吗?请说明理由。

  (2)在等式=+的括号里填入适当的数,使等式成立。

  设计意图:第(1)小题旨在考查学生对单位“1”的掌握情况,为六年级学习分数乘除法解决问题做铺垫。第(2)小题重在考查学生对分数的基本性质掌握情况,培养学生思维的灵活性。如果括号里填相同的数,那么=+;如果括号里填不同的数,则有多种选择,=+=+=+=+。对五年级的学生而言,不需写出所有答案,只要能有意识地先将分子、分母乘以相同的数,再分成两部分,最后化简为最简分数即可。

  (三)课堂小结,回顾反思

  1、通过今天的复习,你有什么收获?在练习的过程中遇到什么困难,出现什么错误?

  2、回忆今天复习的方法,对今后的复习有什么启示?

  设计意图:对于复习课,教师要关注两点:一是查漏补缺,发现问题是改进教学的起点,也是帮助学生进步的方向;二是关注反思,培养学生整理与复习的方法。

《分数的意义》教学设计通用13

  教学内容:

  人教版五年级下册第四单元第一课时《分数的产生和意义》。

  学情分析:

  在学习这部分内容之前学生在三年级上学期的学习中,已经借助操作、直观,初步认识了分数,知道了分数的各部分的名称,会读、写简单的分数,会比较分数大小还会简单的同分母分数加、减法。

  教学设想:

  本节课的教学,单位“1”和分数单位这两个概念非常重要,应从直观到抽象,由个别到一般,用利操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得者得感悟,自己构建这些概念的意义。

  教学目标:

  1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,知道分子、分母和分数单位的含义。

  2、经历认识分数意义的过程,培养学生的抽象、概括能力。

  3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

  教学重点:

  明确分数和分数单位的意义,理解单位“1”的含义。

  教学难点:

  对单位“1”的理解。

  教具和学具:

  卷尺、四张长方形白纸、四条一米长的绳子、若干个小立方体和一捆绘画笔。

  教学过程:

  一、创设情景,温故引新。

  1、师:我们已经初步认识了分数。(板书:分数)谁来说几个分数?(板书:如1/4)你知道分数各部分的名称吗?(板书):师:那你们知道分数是怎样产生的吗?

  二、教学分数的产生。

  2、能根据成语说出下面的分数吗?

  一分为二()七上八下()百里挑一()十拿九稳()

  1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?

  2、在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。呈现情境图,介绍分数的起源和发展历史。

  3、总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。所以分数是人类为了适用实际需要而产生的。

  4、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?

  三、教学分数的意义。

  师:下面老师要先考考大家,你能举例说明1/4的含义吗?(投影出示题目,学生口答)

  出示一个1/4的正方形的阴影部分。

  师:阴影部分可以用什么分数表示?它表示什么意思?

  2、师:下列图中的阴影部分能用1/4表示吗?为什么?

  如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。

  (强调一定要平均分)(板书:平均分)

  3、动手操作,探索新知。

  (1)操作。

  师:现在我给每一个小组都提供了四种材料,一张长方形纸、一条一米长的绳子、6个小立方体,4根绘画笔。下面请每组根据这四种一样的材料,通过折一折、画一画、分一分等方法,创造出几个不同的分数。

  学生动手操作,教师巡视。

  (2)交流

  师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?

  小组交流。

  (3)认识单位“1”。

  师:利用这四种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

  生:一张长方形纸、一米长的绳子、6个小立方体、4根绘画笔平均分。

  师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分

  (显示:一个物体)

  把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。(显示:一个计量单位)

  把6个小方块、4根绘画笔平均分,我们又可以称之为把一些物体平均分。(显示:一些物体)

  师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。(显示)

  师:(投影出示):我们可以把这3只象看作一个整体吗?

  我们可以把这6颗草莓看作一个整体吗?这4只老虎呢?

  我们还可以把哪些物体也看成一个整体呢?(学生举例。)

  师:象这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,(显示)强调说明:①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个苹果、一枝铅笔、一个计量单位、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。

  概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

  (4)理解分子分母的意义。

  师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份”是分数中的什么?(分母,表示平均分的份数)“这样的一份或几份”是分数中的什么?(分子,表示取的份数)

  (5)师:接下来我想出几道题来考考大家,你们愿不愿意接受挑战?

  ①把这个文具盒里的所有铅笔平均分给2个同学,每个同学得到这盒铅笔的几分之几?

  生:1/2

  ②师:为什么可以用1/2来表示?

  ③师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?

  如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?

  如果把这盒铅笔平均分给50个同学,每个同学得到这盒铅笔的几分之几呢?2个同学得到这盒铅笔的几分之几?

  如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?10个同学得到这盒铅笔的几分之几呢?

  ④师:现在这个文具盒里有6支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?

  ⑤如果我再增加2支铅笔,把8支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?为什么同样是1/2,铅笔的支数不一样?

  师:因为一个整体表示的具体数量不同,所以同样是1/2,铅笔的支数不一样。

  四、教学分数单位。

  师:整灵敏有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?

  显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

  师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,后再让学生自己举例说明)

  加强练习,深化概念。

  练习:

  1、35表示把()平均分成()份,表示这样的()份,它的分母是(),表示();分子是(),表示()。

  2、67的分数单位是(),有()个这样的分数单位。

  3、说出每个分数的意义。

  (1)五(1)班的三好生人数占全班的29 。

  (2)一节课的时间是23小时。

  4、课本练习十一第9题。

  5、判断(对的打“√”,错的要“×”)。

  (1)一堆苹果分成4份,每份占这堆苹果的14()

  (2)把5米长的绳子平均分成7段,每段占全长的57()

  (3)14个19是914()

  (4)自然数1和单位“1”相同。()

  五、小结。

  今天这节课我们学习了?你有哪些收获?

《分数的意义》教学设计通用14

  教学目标:

  1、了解分数的产生,理解分数的意义和单位“1”的含义,掌握分数单位。

  2、通过活动,引导学生经历探究分数意义的过程,在经历分数的意义和单位“1”的探求过程中,培养学生抽象、概括、分析和推理的能力。

  3、通过对分数的意义和单位“1”的探求,培养学生的钻研精神和合作意识,体验数学与生活的密切联系。

  教学重点:

  建立单位“1”的概念,理解分数的意义,自己发现分数单位。

  教学难点:

  理解单位“1”的概念。

  教学过程:

  一、激情导入

  1、导入课题

  师:把两个苹果平均分给两个小朋友,每人分几个?把一个苹果平均分给两个小朋友,每人分几个?(能用整数表示吗?)

  小结:在进行测量、分物或计算时往往不能正好得到整数的结果,这时就产生了一种新的数,叫分数。板书课题:分数的产生及意义。

  2、明确目标:

  (1)明确分数的产生及意义。

  (2)理解分数的意义和单位“1”的含义。

  3、预期效果

  出示1/2,关于分数,你们已经知道了哪些知识(分数由几部分组成,各部分的名称。)

  二、民主导学

  任务一:

  1、任务呈现

  利用手中的学具表示分数1/4

  (1)请同学们利用手中的学具折一折,分一分,涂一涂,表示出1/4

  (2)小组的同学互相说一说,1/4表示什么意思。

  2、自主学习

  学生动手操作,教师巡视。

  3、展示交流

  (1)把一张圆形纸平均分成4份,每份是这个圆的1/4

  把一张正方形纸平均分成4份,每份是这个正方形的1/4

  把一条线段平均分成4份,每份是这条线段的1/4

  把4个三角平均分成4份,每份是4个三角的1/4

  把8个圆平均分成4份,每份是8个圆的1/4

  (2)像一张圆形纸、一张正方形纸等都是一个物体(板书:一个物体);4个三角、8个圆等是一些物体(板书:一些物体)。一个物体和一些物体都可以看成一个整体。

  (3)一个整体可以用自然数1来表示,通常把它叫做单位“1”,(板书:单位“1”)。

  任务二:

  1、任务呈现

  出示2/3,它表示什么呢?要求每两人一组选择学具,表示2/3

  2、自主学习

  学生动手操作,教师巡视。

  3、展示交流

  (1)把3条金鱼看作一个整体,平均分成3份,其中的1份是这个整体的1/3,2份是这个整体的2/3

  (2)把6把牙刷看成一个整体,平均分成3份,其中的2份是这个整体的2/3

  (3)把9朵花看成单位“1”,平均分成3份,其中的2份是单位“1”的2/3

  师:谁来说说什么叫分数?

  把单位“1”平均分成若干份,表示这样一份或几份的数叫做分数。

  任务三:

  1、任务呈现:

  (1)出示1/(),这是分数吗?请你把它填一个分母变成几分之一。

  (2)每个同学都有12朵花,请你们涂上颜色来表示它的几分之一。

  2、自主学习

  3、展示交流

  (1)把12朵花平均分成2份,涂色的部分是这个整体的1/2

  (2)把12朵花平均分成3份,涂色的部分是这个整体的1/3

  (3)把12朵花平均分成4份,涂色的部分是单位“1”的1/4

  (4)把12朵花平均分成6份,涂色的部分是单位“1”的1/6

  观察这组分数,你发现了什么?

  小结:把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。2/3的分数单位是1/3

  三、检测导结

  1、目标检测

  2、结果反馈

  3、反思总结

  板书设计:分数的产生及意义

  一个物体

  单位“1”

  一些物体

  把单位“1”平均分成若干份,表示其中一份或几份的数,叫做分数。

  表示其中一份的数,叫做分数单位。

【《分数的意义》教学设计】相关文章:

《分数的意义》的教学设计03-07

《分数的意义》教学设计03-07

分数的意义教学设计05-07

《分数的意义》优秀教学设计03-06

“分数的意义”数学教学设计03-06

人教版《分数的意义》教学设计04-17

《分数的意义》的优秀教学设计12-21

分数的意义教学设计板书02-08

关于分数除法的意义教学设计05-30