高中数学教学设计(精选12篇)
在教学工作者实际的教学活动中,可能需要进行教学设计编写工作,教学设计是一个系统化规划教学系统的过程。那么大家知道规范的教学设计是怎么写的吗?以下是小编整理的高中数学教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
高中数学教学设计 篇1
教学目标
1.明确等差数列的定义
2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题
3.培养学生观察、归纳能力
教学重点
1.等差数列的概念;
2.等差数列的通项公式
教学难点
等差数列“等差”特点的理解、把握和应用
教具准备
投影片1张
教学过程
(I)复习回顾
师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)
(Ⅱ)讲授新课
师:看这些数列有什么共同的特点?
1,2,3,4,5,6;①
10,8,6,4,2,…;②
生:积极思考,找上述数列共同特点。
对于数列①(1≤n≤6);(2≤n≤6)
对于数列②-2n(n≥1)(n≥2)
对于数列③(n≥1)(n≥2)
共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的.特点。具有这种特点的数列,我们把它叫做等差数。
一、定义:
等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,-2。
二、等差数列的通项公式
师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:
若将这n-1个等式相加,则可得:
即:即:即:……
由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
如数列①(1≤n≤6)
数列②:(n≥1)
数列③:(n≥1)
由上述关系还可得:即:则:=如:
三、例题讲解
例1:(1)求等差数列8,5,2…的第20项
(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。
(Ⅲ)课堂练习
生:(口答)课本P118练习3
(书面练习)课本P117练习1
师:组织学生自评练习(同桌讨论)
(Ⅳ)课时小结
师:本节主要内容为:①等差数列定义。
即(n≥2)
②等差数列通项公式(n≥1)
推导出公式:(V)课后作业
1、课本P118习题3.21,2
2、(1)预习内容:课本P116例2P117例4
(2)预习提纲:
①如何应用等差数列的定义及通项公式解决一些相关问题?
②等差数列有哪些性质?
高中数学教学设计 篇2
一、教学内容分析
圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象。恰当地利用定义解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。
二、学生学习情况分析
我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。
三、设计思想
由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。
四、教学目标
1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。
2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。
3.借助多媒体辅助教学,激发学习数学的兴趣。
五、教学重点与难点:
教学重点
1.对圆锥曲线定义的理解
2.利用圆锥曲线的定义求“最值”
3.“定义法”求轨迹方程
教学难点:
巧用圆锥曲线定义解题
六、教学过程设计
【设计思路】
(一)开门见山,提出问题
一上课,我就直截了当地给出——
例题1:(1)已知A(-2,0),B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是()。
(A)椭圆(B)双曲线(C)线段(D)不存在
(2)已知动点M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是()。
(A)椭圆(B)双曲线(C)抛物线(D)两条相交直线
【设计意图】
定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。
为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。
【学情预设】
估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2。
这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。
在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。
(二)理解定义、解决问题
例2(1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910相内切,求△ABC面积的'最大值。
(2)在(1)的条件下,给定点P(-2,2),求|PA|
【设计意图】
运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。
【学情预设】
根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。
(三)自主探究、深化认识
如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会——
练习:设点Q是圆C:(x1)2225|AB|的最小值。3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。
引申:若将点A移到圆C外,点M的轨迹会是什么?
【设计意图】练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话,可借助“多媒体课件”,引导学生对自己的结论进行验证。
【知识链接】
(一)圆锥曲线的定义
1.圆锥曲线的第一定义
2.圆锥曲线的统一定义
(二)圆锥曲线定义的应用举例
1.双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P到右准线的距离。
2.|PF1||PF2|2.P为等轴双曲线x2y2a2上一点,F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。
3.在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。
4.(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。
x2y211(2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM||MF|最小时,求M点的坐标。
(3)已知点P(-2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。
5.已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最小值与最大值。
七、教学反思
1.本课将借助于,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。
2.利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法。循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。
总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题。而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。
高中数学教学设计 篇3
学习目标
明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题.
学习过程
一、学前准备
复习:
1.(课本P28A13)填空:
(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是;
(2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是;
(3)5名工人要在3天中各自选择1天休息,不同方法的种数是;
(4)集合A有个元素,集合B有个元素,从两个集合中各取1个元素,不同方法的种数是;
二、新课导学
◆探究新知(复习教材P14~P25,找出疑惑之处)
问题1:判断下列问题哪个是排列问题,哪个是组合问题:
(1)从4个风景点中选出2个安排游览,有多少种不同的方法?
(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?
◆应用示例
例1.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?
例2.7位同学站成一排,分别求出符合下列要求的不同排法的种数.
(1)甲站在中间;
(2)甲、乙必须相邻;
(3)甲在乙的左边(但不一定相邻);
(4)甲、乙必须相邻,且丙不能站在排头和排尾;
(5)甲、乙、丙相邻;
(6)甲、乙不相邻;
(7)甲、乙、丙两两不相邻。
◆反馈练习
1.(课本P40A4)某学生邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?
2.5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列
3.马路上有12盏灯,为了节约用电,可以熄灭其中3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,那么熄灯方法共有______种.
当堂检测
1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为()
A.42B.30C.20D.12
2.(课本P40A7)书架上有4本不同的`数学书,5本不同的物理书,3本不同的化学书,全部排在同一层,如果不使同类的书分开,一共有多少种排法?
课后作业
1.(课本P41B2)用数字0,1,2,3,4,5组成没有重复数字的数,问:(1)能够组成多少个六位奇数?(2)能够组成多少个大于201345的正整数?
2.(课本P41B4)某种产品的加工需要经过5道工序,问:(1)如果其中某一工序不能放在最后,有多少种排列加工顺序的方法?(2)如果其中两道工序既不能放在最前,也不能放在最后,有多少种排列加工顺序的方法?
高中数学教学设计 篇4
一、教学内容分析
《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。-----《实习作业》。本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。
二、学生学习情况分析
该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的.学生在学习共享的过程中受到更多的数学文化的熏陶。
三、设计思想
《标准》强调数学文化的重要作用,体现数学的文化的价值。数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。
四、教学目标
1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;
2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;
3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。
五、教学重点和难点
重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;
难点:培养学生合作交流的能力以及收集和处理信息的能力。
六、教学过程设计
【课堂准备】
1.分组:4~6人为一个实习小组,确定一人为组长。教师需要做好协调工作,确保每位学生都参加。
2.选题:根据个人兴趣初步确定实习作业的题目。教师应该到各组中去了解选题情况,尽量多地选择不同的题目。
高中数学教学设计 篇5
一、概述
教材内容:等比数列的概念和通项公式的推导及简单应用 教材难点:灵活应用等比数列及通项公式解决一般问题 教材重点:等比数列的概念和通项公式
二、教学目标分析
1. 知识目标
1)
2) 掌握等比数列的定义 理解等比数列的通项公式及其推导
2.能力目标
1)学会通过实例归纳概念
2)通过学习等比数列的通项公式及其推导学会归纳假设
3)提高数学建模的能力
3、情感目标:
1)充分感受数列是反映现实生活的模型
2)体会数学是来源于现实生活并应用于现实生活
3)数学是丰富多彩的而不是枯燥无味的'
三、教学对象及学习需要分析
1、 教学对象分析:
1)高中生已经有一定的学习能力,对各方面的知识有一定的基础,理解能力较强。并掌握了函数及个别特殊函数的性质及图像,如指数函数。之前也刚学习了等差数列,在学习这一章节时可联系以前所学的进行引导教学。
2)对归纳假设较弱,应加强这方面教学
2、学习需要分析:
四. 教学策略选择与设计
1.课前复习
1)复习等差数列的概念及通向公式
2)复习指数函数及其图像和性质
2.情景导入
高中数学教学设计 篇6
一、教学内容分析:
本节教材选自人教a版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。
二、学生学习情况分析:
任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。
三、设计思想
本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力,提高学生的数学逻辑思维能力。
四、教学目标
通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。
五、教学重点与难点
重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。
六、教学过程设计
(一)知识准备、新课引入
提问1:根据公共点的情况,空间中直线a和平面?有哪几种位置关系?并完成下表:(多媒体幻灯片演示) a??
提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的`判定途径。
[设计意图:通过提问,学生复习并归纳空间直线与平面位置关系引入本节课题,并为探寻直线与平面平行判定定理作好准备。]
(二)判定定理的探求过程
1、直观感知
提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗?
生1:例举日光灯与天花板,树立的电线杆与墙面。
生2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示),然后教师用多媒体动画演示。
[学情预设:此处的预设与生成应当是很自然的,但老师要预见到可能出现的情况如电线杆与墙面可能共面的情形及门要离开门框的位置等情形。]
2、动手实践
教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行。又如老师直立讲台,则大家会感觉到老师(视为线)与四周墙面平行,如老师向前或后倾斜则感觉老师(视为线)与左、右墙面平行,如老师向左、右倾斜,则感觉老师(视为线)与前、后墙面平行(老师也可用事先准备的木条放在讲台桌上作上述情形的演示)。
[设计意图:设置这样动手实践的情境,是为了让学生更清楚地看到线面平行与否的关键因素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。]
3、探究思考
(1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:①平面外一条线②我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为平面内一条直线③这两条直线平行
(2)如果平面外的直线a与平面?内的一条直线b平行,那么直线a与平面?平行吗?
4、归纳确认:(多媒体幻灯片演示)
直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。
简单概括:(内外)线线平行?线面平行a符号表示:ba||? a||b??
温馨提示:
作用:判定或证明线面平行。
关键:在平面内找(或作)出一条直线与面外的直线平行。
思想:空间问题转化为平面问题
(三)定理运用,问题探究(多媒体幻灯片演示)
1、想一想:
(1)判断下列命题的真假?说明理由:
①如果一条直线不在平面内,则这条直线就与平面平行()
②过直线外一点可以作无数个平面与这条直线平行( )
③一直线上有二个点到平面的距离相等,则这条直线与平面平行( )
(2)若直线a与平面?内无数条直线平行,则a与?的位置关系是( ) a、a ||? b、a?? c、a ||?或a?? d、a?? [学情预设:设计这组问题目的是强调定理中三个条件的重要性,同时预设(1)中的③学生可能认为正确的,这样就无法达到老师的预设与生成的目的,这时教师要引导学生思考,让学生想象的空间更广阔些。此外教师可用预先准备好的羊毛针与泡沫板进行演示,让羊毛针穿过泡沫板以举不平行的反例,如果有的学生空间想象力强,能按老师的要求生成正确的结果则就由个别学生进行演示。]
2、作一作:
设a、b是二异面直线,则过a、b外一点p且与a、b都平行的平面存在吗?若存在请画出平面,不存在说明理由?
先由学生讨论交流,教师提问,然后教师总结,并用准备好的羊毛针、铁线、泡沫板等演示平面的形成过程,最后借多媒体展示作图的动画过程。
[设计意图:这是一道动手操作的问题,不仅是为了拓展加深对定理的认识,更重要的是培养学生空间感与思维的严谨性。]
3、证一证:
例1(见课本60页例1):已知空间四边形abcd中,e、f分别是ab、ad的中点,求证:ef ||平面bcd。
变式一:空间四边形abcd中,e、f、g、h分别是边ab、bc、cd、da中点,连结ef、fg、gh、he、ac、bd请分别找出图中满足线面平行位置关系的所有情况。(共6组线面平行)变式二:在变式一的图中如作pq?ef,使p点在线段ae上、q点在线段fc上,连结ph、qg,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形efgh、pqgh分别是怎样的四边形,说明理由。
[设计意图:设计二个变式训练,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。]例2:如图,在正方体abcd—a1b1c1d1中,e、f分别是棱bc与c1d1中点,求证:ef ||平面bdd1b1分析:根据判定定理必须在平
面bdd1b1内找(作)一条线与ef平行,联想到中点问题找中点解决的方法,可以取bd或b1d1中点而证之。
思路一:取bd中点g连d1g、eg,可证d1gef为平行四边形。
思路二:取d1b1中点h连hb、hf,可证hfeb为平行四边形。
[知识链接:根据空间问题平面化的思想,因此把找空间平行直线问题转化为找平行四边形或三角形中位线问题,这样就自然想到了找中点。平行问题找中点解决是个好途径好方法。这种思想方法是解决立几论证平行问题,培养逻辑思维能力的重要思想方法]
4、练一练:
练习1:见课本6页练习1、2
练习2:将两个全等的正方形abcd和abef拼在一起,设m、n分别为ac、bf中点,求证:mn ||平面bce。
变式:若将练习2中m、n改为ac、bf分点且am = fn,试问结论仍成立吗?试证之。
[设计意图:设计这组练习,目的是为了巩固与深化定理的运用,特别是通过练习2及其变式的训练,让学生能在复杂的图形中去识图,去寻找分析问题、解决问题的途径与方法,以达到逐步培养空间感与逻辑思维能力。]
(四)总结
先由学生口头总结,然后教师归纳总结(由多媒体幻灯片展示):
1、线面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线与这个平面平行。
2、定理的符号表示:ba||? a||b??简述:(内外)线线平行则线面平行
3、定理运用的关键是找(作)面内的线与面外的线平行,途径有:取中点利用平行四边形或三角形中位线性质等。
七、教学反思
本节“直线与平面平行的判定”是学生学习空间位置关系的判定与性质的第一节课,也是学生开始学习立几演泽推理论述的思维方式方法,因此本节课学习对发展学生的空间观念和逻辑思维能力是非常重要的。
本节课的设计遵循“直观感知——操作确认——思辩论证”的认识过程,注重引导学生通过观察、操作交流、讨论、有条理的思考和推理等活动,从多角度认识直线和平面平行的判定方法,让学生通过自主探索、合作交流,进一步认识和掌握空间图形的性质,积累数学活动的经验,发展合情推理、发展空间观念与推理能力。
本节课的设计注重训练学生准确表达数学符号语言、文字语言及图形语言,加强各种语言的互译。比如上课开始时的复习引入,让学生用三种语言的表达,动手实践、定理探求过程以及定理描述也注重三种语言的表达,对例题的讲解与分析也注意指导学生三种语言的表达。
本节课对定理的探求与认识过程的设计始终贯彻直观在先,感知在先,学自己身边的数学,感知生活中包涵的数学现象与数学原理,体验数学即生活的道理,比如让学生举生活中能感知线面平行的例子,学生会举出日光灯与天花板,电线杆与墙面,转动的门等等,同时老师的举例也很贴进生活,如老师直立时与四周墙面平行,而向前、向后倾斜则只与左右墙面平行,而向左、右倾斜则与前后黑板面平行。然后引导学生从中抽象概括出定理。
高中数学教学设计 篇7
一.教材分析。
( 1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学
( 5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思
想方法,都是学生今后学习和工作中必备的数学素养。
(2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫
二.学情分析。
( 1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的通项公式和求和公式与方法,等比数列的概念与通项公式。
( 2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。
(3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。
三.教学目标。
根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。
(2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.
(3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。
四.重点,难点分析。
教学重点:公式的推导、公式的特点和公式的运用。
教学难点:公式的推导方法及公式应用中q与1的关系。
五.教法与学法分析。
培养学生学会学习、学会探究是全面发展学生能力的`重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而
获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。
六.课堂设计
(一)创设情境,提出问题。(时间设定:3分钟)
[利用投影展示]在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?
[设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容紧扣本节课的主题与重点]
提出问题1:同学们,你们知道西萨要的是多少粒小麦吗?
高中数学教学设计 篇8
一、课程说明
(一)教材分析:
此次一对一家教所使用教材为北师大版高中数学必修5。辅导内容为第一章第二节等差数列。前一节的内容为数列,学生已初步了解到数列的概念,知道什么是首项,什么是通项等等。以及了解到什么是递增数列,什么是递减数列。通过第一节的学习的铺垫,可以让学生更自主的探究,学习等差数列。而我也是在这些基础上为她讲解第二节等差数列。
(二)学生分析:
此次所带学生是一名高二的学生。聪明但是不踏实,做题浮躁。基础知识掌握不够牢靠,知识的运用能力较差,分析能力较弱,解题思路不清。每次她遇到会的题,就快快的草率做完,总会有因马虎而犯的错误。遇到稍不会的,总是很浮躁,不能冷静下来慢慢思考。就由略不会变成不会。但她也是个虚心听教的孩子,给她讲课,她也会很认真地听讲。
(三)教学目标:
1、通过教与学的配合,让她能够懂得什么是等差数列,以及等差数列的通项公式。
2、通过对公式的推导,让她加深对内容的理解,以及学会自己对公式的推导。并且能够灵活运用。
3、在教学中让她通过对公式的推导来明白推理的艺术,并且培养她学习,做题条理清晰,思路缜密的好习惯。
4、让她在学习,做题中一步步抽丝剥茧,寻找解决问题的方法,培养她敢于面对数学学习中的困难,并培养她对克服困难和运用知识。耐心地解决问题。
5、让她在学习中发现数学的独特的美,能够爱上数学这门课。并且认真对待,自主学习。
(四)教学重点:
1、让学生正确掌握等差数列及其通项公式,以及其性质。并能独立的推导。
2、能够灵活运用公式并且能把相应公式与题相结合。
(五)教学难点:
1、让学生掌握公式的推导及其意义。
2、如何把所学知识运用到相应的题中。
二、课前准备
(一)教学器材
对于一对一教教采用传统讲课。一张挂历。
(二)教学方法
通过对生活中的有规律数据的观察来提出问题,让学生结合前一节所学,思考有什么规律。从生活中着手有利于激发学生的兴趣爱好,并能更积极地学习。让学生先独立的.思考,不仅能让她对所学知识映像更为深刻,并且培养她的缜密思维。让她回答后,我再帮助她纠正,并且让她提出心中所虑。经过我给她讲完课后,让她回答自己先前的疑虑。并且让她自己总结,得出结论。最后让她勤加练习。以一种“提出问题—探究问题—学习知识—解答问题—得出结论—强加训练”的模式方法展开教学。
(三)课时安排
课时大致分为五部分:
联系实际提出相关问题,进行思考。
2、以我教她学的模式讲授相关章节知识。
3、让学生练习相关习题,从所学知识中找其相应解题方案。
4、学生对知识总结概括,我再对其进行补充说明。
5、布置作业,让她课后多做练习。
三、课程设计(一)提出问题引入根据我们的挂历上,一个月的日期数。
通过观察每一行日期和每一列日期它们有什么规律?
思考1) 2) 3) 1,3,5,7,9
2,4,6,8,10
6,6,6,6,6
这些每一行有什么规律?
(二)分析问题并讲解
3、通过分析通项公式的特点,做下题(学生自己分析,思考来做。)例:已知在等差数列{an}中,a5??20,a20??35,试求出数列的通项公式?
4、由以上公式,性质,让学生总结。讲解等差数列的定义。并且掌握数列的递增,递减与公差d的关系。
5、总结,串讲当日所学
给出题目,并思考如何快速计算?
(三)布置作业
总结当日所学。
2、做练习册上章节习题。
3、根据当日所学以及课上所讲求的思考题,找出快速运算方法,并引导预习等差数列前n项和。
四、设计理念
以一种最简便,易懂的方式让学生来学习,一切以让学生正确掌握知识,并能正确运用为理念。并能充分调动学生和家教老师的积极性为理念来设计。
五、教学设计反思
本节课教程内容较难,是下一节等差数列前n项和的铺垫。此节课学习通过联系实际,把数学融入到生活中,从生活中探究学习数学。并提出问题,分析问题。把主动权交给学生,由她先独立思考总结,再由我给她正确讲解总结,然后再让她做相应练习题,课后再认真总结。这样可以加强她学习的主动性,更有利于她对知识的消化,吸收。这种方法同时可以培养学生的思维能力,让她从自主学习中探索适合自己的学习方法,培养她独立思考的能力。让她更深刻的了解知识内涵,巩固所学。使她能灵活运用所学。
高中数学教学设计 篇9
教学目标:
1.掌握基本事件的概念;
2.正确理解古典概型的两大特点:有限性、等可能性;
3.掌握古典概型的概率计算公式,并能计算有关随机事件的概率.
教学重点:
掌握古典概型这一模型.
教学难点:
如何判断一个实验是否为古典概型,如何将实际问题转化为古典概型问题.
教学方法:
问题教学、合作学习、讲解法、多媒体辅助教学.
教学过程:
一、问题情境
1.有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,则抽到的牌为红心的概率有多大?
二、学生活动
1.进行大量重复试验,用“抽到红心”这一事件的频率估计概率,发现工作量较大且不够准确;
2.(1)共有“抽到红心1” “抽到红心2” “抽到红心3” “抽到黑桃4” “抽到黑桃5”5种情况,由于是任意抽取的,可以认为出现这5种情况的可能性都相等;
(2)6个;即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,
这6种情况的可能性都相等;
三、建构数学
1.介绍基本事件的概念,等可能基本事件的概念;
2.让学生自己总结归纳古典概型的两个特点(有限性)、(等可能性);
3.得出随机事件发生的概率公式:
四、数学运用
1.例题
例1
有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取2张共有多少个基本事件?(用枚举法,列举时要有序,要注意“不重不漏”)
探究(1):一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球,共有多少个基本事件?该实验为古典概型吗?(为什么对球进行编号?)
探究(2):抛掷一枚硬币2次有(正,反)、(正,正)、(反,反)3个基本事件,对吗?
学生活动:探究(1)如果不对球进行编号,一次摸出2只球可能有两白、一黑一白、两黑三种情况,“摸到两黑”与“摸到两白”的可能性相同;而事实上“摸到两白”的机会要比“摸到两黑”的机会大.记白球为1,2,3号,黑球为4,5号,通过枚举法发现有10个基本事件,而且每个基本事件发生的可能性相同.
探究(2):抛掷一枚硬币2次,有(正,正)、(正,反)、(反,正)、(反,反)四个基本事件.
(设计意图:加深对古典概型的特点之一等可能基本事件概念的理解.)
例2
一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中
一次摸出2只球,则摸到的两只球都是白球的概率是多少?
问题:在运用古典概型计算事件的概率时应当注意什么?
①判断概率模型是否为古典概型
②找出随机事件A中包含的.基本事件的个数和试验中基本事件的总数.
教师示范并总结用古典概型计算随机事件的概率的步骤
例3
同时抛两颗骰子,观察向上的点数,问:
(1)共有多少个不同的可能结果?
(2)点数之和是6的可能结果有多少种?
(3)点数之和是6的概率是多少?
问题:如何准确的写出“同时抛两颗骰子”所有基本事件的个数?
学生活动:用课本第102页图3-2-2,可直观的列出事件A中包含的基本事件的个数和试验中基本事件的总数.
问题:点数之和是3的倍数的可能结果有多少种?
(介绍图表法)
例4
甲、乙两人作出拳游戏(锤子、剪刀、布),求:
(1)平局的概率;
(2)甲赢的概率;
(3)乙赢的概率
设计意图:进一步提高学生对将实际问题转化为古典概型问题的能力.
2.练习
(1)一枚硬币连掷3次,只有一次出现正面的概率为_________
(2)在20瓶饮料中,有3瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为_________
(3)第103页练习1,2.
(4)从1,2,3,…,9这9个数字中任取2个数字,
①2个数字都是奇数的概率为_________;
②2个数字之和为偶数的概率为_________
五、要点归纳与方法小结
本节课学习了以下内容:
1.基本事件,古典概型的概念和特点;
2.古典概型概率计算公式以及注意事项;
3、求基本事件总数常用的方法:列举法、图表法.
高中数学教学设计 篇10
教学准备
教学目标
掌握三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型。
教学重难点
利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。
教学过程
一、练习讲解:《习案》作业十三的第3、4题
3、一根为Lcm的线,一端固定,另一端悬挂一个小球,组成一个单摆,小球摆动时,离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是
(1)求小球摆动的周期和频率;(2)已知g=24500px/s2,要使小球摆动的周期恰好是1秒,线的长度l应当是多少?
(1)选用一个函数来近似描述这个港口的'水深与时间的函数关系,并给出整点时的水深的近似数值
(精确到0.001)。
(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久?
(3)若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3
米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?
本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的“思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。
练习:教材P65面3题
三、小结:1、三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型。
2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型。
四、作业《习案》作业十四及十五。
高中数学教学设计 篇11
重点难点教学:
1.正确理解映射的概念;
2.函数相等的两个条件;
3.求函数的定义域和值域。
教学过程:
1.使学生熟练掌握函数的概念和映射的定义;
2.使学生能够根据已知条件求出函数的定义域和值域; 3.使学生掌握函数的三种表示方法。
教学内容:
1.函数的定义
设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:,yf A其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{|}f A?叫值域(range)。显然,值域是集合B的子集。
注意:
① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
2.构成函数的三要素定义域、对应关系和值域。
3、映射的定义
设A、B是两个非空的.集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。
4.区间及写法:
设a、b是两个实数,且a
(1)满足不等式axb??的实数x的集合叫做闭区间,表示为[a,b];
(2)满足不等式axb??的实数x的集合叫做开区间,表示为(a,b);
5.函数的三种表示方法
①解析法
②列表法
③图像法
高中数学教学设计 篇12
一、教材分析
数学归纳法是一种重要的数学证明方法,在高中数学内容中占有重要的地位,其中体现的数学思想方法对学生进一步学习数学、领悟数学思想至关重要。本课是数学归纳法的第一节课,前面学生对等差数列、数列求和、二项式定理等知识有较全面的把握和较深入的理解,初步掌握了由有限多个特殊事例得出一般结论的推理方法,即不完全归纳法,这是研究数学问题,猜想或发现数学规律的重要手段。但是,由有限多个特殊事例得出的结论不一定正确,这种推理方法不能作为一种论证方法。因此,在不完全归纳法的基础上,必须进一步学习严谨的科学的论证方法——数学归纳法,这是促进学生从有限思维发展到无限思维的一个重要环节,同时本节内容又是培养学生严密的推理能力、训练学生的抽象思维能力、体验数学内在美的好素材。
二、教学目标
学生通过数列等相关知识的学习,已经基本掌握了不完全归纳法,已经由一定的观察、归纳、猜想能力。
根据教学内容特点和教学大纲,结合学生实际而制定以下教学目标:
1.知识目标
(1)了解由有限多个特殊事例得出的一般结论不一定正确。
(2)初步理解数学归纳法原理。
(3)能以递推思想为指导,理解数学归纳法证明数学命题的两个步骤一个结论。
(4)会用数学归纳法证明与正整数相关的简单的恒等式。
2.能力目标
(1)通过对数学归纳法的学习,使学生初步掌握观察、归纳、猜想、分析能力和严密的逻辑推理能力。
(2)在学习中培养学生大胆猜想,小心求证的辨证思维素质以及发现问题、提出问题的意识和数学交流的能力。
3.情感目标
(1)通过对数学归纳法原理的探究,亲历知识的构建过程,领悟其中所蕴含的数学思想和辨正唯物主义观点。
(2)体验探索中挫折的艰辛和成功的快乐,感悟数学的内在美,激发学生学习热情,使学生喜欢数学。
(3)学生通过置疑与探究,初步形成正确的数学观,创新意识和严谨的科学精神。
三、教学重点与难点
1.教学重点
借助具体实例了解数学归纳法的基本思想,掌握它的基本步骤,运用它证明一些与正整数有关的简单恒等式,特别要注意递推步骤中归纳假设的运用和恒等变换的运用。
2.教学难点
(1)如何理解数学归纳法证题的严密性和有效性。
(2)递推步骤中如何利用归纳假设,即如何利用假设证明当时结论正确。
四、教学方法
本节课采用交往性教学方法,以学生及其发展为本,一切从学生出发。在教师组织启发下,通过创设问题情境,激发学习欲望。师生之间、学生之间共同探究多米诺骨牌倒下的原理,并类比多米诺骨牌倒下的原理,探究数学归纳法的原理、步骤;培养学生归纳、类比推理的能力,进而应用数学归纳法,证明一些与正整数n有关的简单数学命题;提高学生的应用能力,分析问题、解决问题的能力。既重视教师的组织引导,又强调学生的主体性、主动性、交流性和合作性。
五、教学过程
(一)创设情境,提出问题
情境一:根据观察某学校第一个到校的女同学,第二个到校的也是女同学,第三个到校的还是女同学,于是得出:这所学校的学生全部是女同学。
情境二:平面内三角形内角和是,四边形内角和是,五边形内角和是,于是得出:凸边形内角和是。
情境三:数列的通项公式为,可以求得,于是猜想出数列的通项公式为。
结论:运用有限多个特殊事例得出的一般性结论,即不完全归纳法不一定正确。因此它不
能作为一种论证的方法。
提出问题:如何寻找一个科学有效的方法证明结论的正确性呢?我们本节课所要学习的'数
学归纳法就是解决这一问题的方法之一。
(二)实验演示,探索解决问题的方法
1.几何画板演示动画多米诺骨牌游戏,师生共同探讨:要让这些骨牌全部倒下,必
须具备那些条件呢?(学生可以讨论,加以教师点拨)
①第一块骨牌必须倒下。
②两块连续的骨牌,当前一块倒下,后面一块必须倒下。
(启发学生转换成数学符号语言:当第块倒下,则第块必须倒下)
教师总结:数学归纳法的原理就如同多米诺骨牌一样。
2.学生类比多米诺骨牌原理,探究出证明有关正整数命题的方法,从而导出本课的重心:数学归纳法的原理及其证明的两个步骤。(给学生思考的时间,教师提问,学生回答,教师补充完善,对学生的回答给予肯定和鼓励)
数学归纳法公理:(板书)
(1)(递推基础)当取第一个值(例如等)结论正确;
(2)(递推归纳)假设当时结论正确;(归纳假设)
证明当时结论也正确。(归纳证明)
那么,命题对于从开始的所有正整数都成立。
教师总结:步骤
(1)是数学归纳法的基础,步骤
(2)建立了递推过程,两者缺一不可,这就是数学归纳法。
(三)迁移应用,理解升华
例1:用数学归纳法证明:等差数列中,为首项,为公差,则通项公式为.①
选题意图:让学生注意:
①数学归纳法是一种完全归纳的证明方法,它适用于与正整数有关的问题;
②两个步骤,一个结论缺一不可,否则结论不成立;
③在证明递推步骤时,必须使用归纳假设,必须进行恒等变换。
此时学生心中已有一个初步的证明模式,教师应该规范板书,给学生提供一个示范。
证明:
(1)当时,等式左边,等式右边,等式①成立
(2)假设当时等式①成立,即有
那么,当时,有所以当时等式①也成立。
根据(1)和(2),可知对任何,等式①都成立。
例2:用数学归纳法证明:当时
选题意图:通过师生共同活动,使学生进一步熟悉数学归纳法证题的两个步骤和一个结论。
例3:用数学归纳法证明:当时
选题意图:①进一步让学生理解数学归纳法的严密性和合理性,从而从感性认识上升为理性认识;
②掌握从到时等式左边的变化情况,合理的进行添项、拆项、合并项等。
(四)反馈练习,巩固提高
课堂练习:用数学归纳法证明:当时
(练习让学生独立完成,上黑板板演,要求书写工整,步骤完整,表述清楚,如果发现学
生证明过程中的错误,教师及时纠正、剖析,同时对学生板演好的方面予以肯定和鼓励。)
教师总结:利用数学归纳法证明和正整数相关的命题时,要注意以下三句话:递推基础不
可少,归纳假设要用到,结论写明莫忘掉。
(五)反思总结
学生思考后,教师提问,让同学相互补充完善,教师最后总结,这一环节可以培养学
生抽象、归纳、概括、总结的能力,同时教师也可以及时了解学生的掌握情况,以便弥补和及时调整下节课的教学方向。
小结:(1)归纳法是一种由特殊到一般的推理方法,分完全归纳法和不完全归纳法两种,
而不完全归纳法得出的结论不具有可靠性,必须用数学归纳法进行严格证明;
(2)数学归纳法作为一种证明方法,用于证明一些与正整数n有关数学命题,它的基本思想是递推思想,它的证明过程必须是两步,最后还有结论,缺一不可;
(3)递推归纳时从到,必须用到归纳假设,并进行适当的恒等变换。
(六)作业布置
选修2-2习题2.3第1题第2题
【高中数学教学设计】相关文章:
高中数学教案教学设计12-02
高中数学教学设计15篇05-01
高中数学教学设计(精选22篇)05-23
高中数学圆方程教学设计07-10
人教版高中数学优秀教学设计03-20
高中数学教学心得11-20
高中数学教学论文06-25
高中数学教学总结11-19
教学设计模板-教学设计模板08-02