我要投稿 投诉建议

长方体和正方体教学设计

时间:2024-05-27 12:57:29 教学设计 我要投稿

长方体和正方体教学设计

  作为一位杰出的老师,总归要编写教学设计,教学设计一般包括教学目标、教学重难点、教学方法、教学步骤与时间分配等环节。那么大家知道规范的教学设计是怎么写的吗?以下是小编为大家收集的长方体和正方体教学设计,欢迎阅读,希望大家能够喜欢。

长方体和正方体教学设计

长方体和正方体教学设计1

  教学目标

  1、通过操作观察,使学生知道长方体和正方体表面积的含义、

  2、初步学会长方体和正方体表面积的计算方法、

  3、培养学生的动手操作能力和空间观念、

  教学重点

  建立表面积概念,初步学会计算长方体和正方体的表面积、

  教学难点

  正确建立表面积的概念、

  教学步骤

  一、铺垫孕伏、

  1、长方体的特征是什么?

  2、正方体的特征是什么?

  指出自带长方体纸盒的长、宽、高,并说出右面、上面的长和宽是多少?面积是多少?

  二、探究新知、

  导入:同学们对长方体的每个面的面积都会计算了,那么整个长方体6个面的面积怎么计算呢?这节课我们就来学习这个内容、

  教师节,笑笑为老师准备了一个小礼物,她想给它进行包装,到底要买多大的包装纸才够而且又最省纸呢?这实际上就是求什么?(就是求长方体6个面的面积一共是多少。)

  师:那么怎样求这6个面的面积呢?

  拿出你准备的纸盒,剪一剪,看一看,能发现什么?(可以分别求出每个面的面积,再加起来;发现相对面的面积相等;发现6个面的总面积就是包装纸的'面积。)学生操作,师巡视。

  师:老师发现同学们观察的真仔细,老师这里有一个长方体,谁能说出它的长、宽、高是多少?

  老师沿着棱把这个纸盒剪开,请大家帮老师算算,看你能算出它哪个免得面积?是多少?(指名汇报)

  同学们说的真好。你能把下面表格填上吗?看谁又快又对。

  师:长方体6个面的面积和又叫长方体的表面积。

  那么怎样求长方体的表面积呢?小组内讨论以下。(师出示课件)

  正方体的6个面都相等,请同学们继续观察:把一个正方体展开,怎么求它的表面积?(讨论)课件演示

  什么叫表面积呢?

  1、教师明确:长方体或正方体六个面的总面积叫做它的表面积、

  2、学生两人一组相互说一说什么是长方体的表面积、

  (二)长方体表面积的计算方法、【演示课件“长方体的表面积”】

  1、学生归纳:

  上下两个面大小相等,面积用长方体的长乘宽;

  前后两个面大小相等,面积用长方体的长乘高;

  左右两个面大小相等面积用长方体的高乘宽、

  2、教学例1、

  做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

  教师启发:“做这样一个长方体纸盒要用多少平方厘米的硬纸板”就是要计算这个长方体的表面积、首先要找出每个面的长和宽、根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积、

长方体和正方体教学设计2

  一、课题

  长方体和正方体的认识

  二、教学目标

  (一)掌握长方体和正方体的特征,认识它们之间的关系。

  (二)培养学生动手操作、观察、抽象概括的能力和初步的空间观念。 教学重点和难点

  (一)长方体和正方体的特征。

  (二)认识立体图形,发展学生初步的空间观念。 教具准备

  三、教具

  长方体框架、长方体、正方体、圆柱、墨水瓶盒等,课件 学具:长方体和正方体纸盒。

  四、教学过程

  (一)复习准备

  同学们,我们一起来回忆一下以前学过什么图形?谁来说说 (学生说)

  不错,那谁来说以说它们当中哪些图形是平面图形?哪些是立体图形?(边叙述,边出示幻灯片)

  今天我们就来进一步认识这些图形中的两个——长方体和正方体 (板书:长方体和正方体)

  (二)新授

  1、老师今天带来了长方体(展示长方体)和正方体(展示正方体)。 2、还记得我们以前认识图形的一些方法吗?谁愿意来给老师说说? (学生说:摸一摸,看一看,比一比,量一量,数一数 ……)

  我们今天进一步认识长方体和正方体,老师要看一下你们都用了哪些方法?

  现在请仔细观察你的长方体和正方体,想一想,它是由哪些部分组成的?我请......

  (学生说)

  3、说的真好,长方体和正方体都是由面、棱、顶点三个部分组成的,那谁来指指长方体的面是哪一个部分?

  (请一个学生上台来说)

  拿出你们的长方体和正方体摸摸看。 谁来指指长方体的.棱是哪一个部分? (请一个学生上台来说)

  拿出你们的长方体和正方体摸摸看。

  那长方体或正方体的顶点又是指哪一个部分?请同桌互相指指看看。 (同桌互相指顶点) (课件出示)

  数学上我们把长方体或正方体平平的部分叫做面,把两个面相交的线段叫做棱,我们把三条棱相交的点叫做顶点

  今天我们就从面、棱、顶点三个方面来研究长方体和正方体 首先研究长方体,我们一起来读一下讨论要求。 (学生读要求)

  现在每排的4个同学为一个小组,分组讨论,并将讨论的结果填写在老师发放的表格中。

长方体和正方体教学设计3

  您现在正在阅读的《长方体和正方体的表面积》教学设计及反思文章内容由收集!本站将为您提供更多的精品教学资源!《长方体和正方体的表面积》教学设计及反思苏教版小学数学六年级上册 长方体和正方体的表面积 教学设计

  教学目标:

  1、建立表面积概念。

  2、小组合作探究长方体表面积的求法,在观察对比中,得到长方体表面积公式、正方体表面积公式。

  3、运用公式实际应用,并提升学生的数学思维能力。

  教学重点:

  1、长方体表面积公式的求法探究。

  2、公式的实际应用。

  教学难点:

  长方体表面积公式中长宽,长高,宽高呈现后,能够清晰的知道它们分别求的是哪些面的面积。

  教具、学具的准备:长方体盒、正方体盒、桔子、长方体展开图、课件

  教学研究过程:

  一、回忆长方体、正方体特征,重建表象

  1、师:我们已经初步认识了长方体和正方体,谁来说说长方体、正方体有哪些特征?

  2、生:汇报

  (长方体有6个面,每个面都是长方形或有两个相对面是正方形;长方体相对的面面积相等;长方体有8个顶点,12条棱,每平行的四条棱长度相等)

  (正方体6个面都是完全相等的正方形,正方体是特殊的长方体,它的12条棱都相等)

  3、师小结并引出课题

  同学们对长方体、正方体认识的很好,今天我们一起共同来研究长方体、正方体的表面积。(板书课题)

  二、建立表面积概念,认识表面积

  1、师:看到这个课题,你最想知道或最想了解什么?

  2、生交流:什么是表面积?

  怎样求表面积?

  求表面积在生活中有什么用途?

  表面积和以前所学的面积有什么不同?

  3、师拿一桔子;提出:你知道桔子的表面积指的是哪里吗?

  生摸一摸,说一说。

  4、师:物体表面的总面积叫做物体的表面积,长方体的表面积指的是哪里,那正方体呢?

  5、生指一指,摸一摸,说一说。

  三、探求长方体表面积计算方法、正方体表面积计算方法

  1、师:我们知道什么是表面积,如何来求它们的表面积呢?

  小组内两两合作,把你如何求长方体表面积的思路与你的同桌进行交流。

  (师在小组间巡视)

  2、生交流汇报各种求长方体表面积的方法。

  3、交流比较各种求法,继而得出长方体表面积计算方法(汉字与字母公式表示)

  长方体表面积=(长宽+长高+宽高)2

  S= 2(ab+ah+bh)

  4、课件展示:通过课件的展示,让学生直观感受长方体

  表面积方法的研究过程。

  5、生总结:正方体表面积计算方法(含字母)

  正方体表面积=棱长棱长6

  S=6a2

  四、基本反馈练习

  1、计算一香皂盒的表面积

  师:老师手里这个盒子的长为10cm,宽为7cm,高为3cm,

  请你计算这个盒的表面积。

  生试做,并指生上台板演

  2、课件出示(三个立体图形),分别计算它们的表面积。

  3、生在实物投影仪前讲解交流。

  五、解释应用(课件出示题目)

  您现在正在阅读的《长方体和正方体的表面积》教学设计及反思文章内容由收集!本站将为您提供更多的精品教学资源!《长方体和正方体的表面积》教学设计及反思1、一长方体铁盒长18厘米,宽15厘米,高12厘米,做这个铁盒至少要用多少平方厘米的铁皮?

  a、生交流思路

  b、列式。

  2、一正方体无盖木箱,棱长5分米,这一箱子的表面积是多少?

  a、生试做

  b、交流思路

  3、一间长8米,宽6米,高4米教室,门窗面积是15平方米,要粉刷四壁和房顶面,粉刷面积是多少平方米?

  a、小组内交流思路

  b、全班交流解题策略

  c、生计算

  3、谈收获或体会

  通过这节课的研究与交流,你的收获或体会是什么?

  反思:本着让学生的主体性得到充分体现,实施学生主体参与教学的理念,在课堂教学中体现主体实验的两条基本原则,即诚心诚意的让学生做主人,严肃严格的基本训练。通过老师提供的材料,创设一切有利于学生主体参与的环境氛围,在教师的引领及点拨下,让孩子们自己去认知、去概括归纳总结,亲历知识形成的过程,在建构知识的过程中让更多的孩子体验成功的快乐,使孩子们真正成为课堂学习中幸福的主人,使孩子们获得有效的数学学习,学习质量得到提高。本着这一教学理念,这节课设计了以下几个大的框架。

  框架一:从回忆长方体、正方体特征,重建长方体、正方体表象,为解决本解决本节课的知识搭建一个前台。

  框架二:建立表面积概念

  在提供实物这一材料下,通过看一看、指一指、摸一摸、说一说,调动多个感官来很好的认识、理解表面积这一概念。

  框架三:探求表面积计算方法

  在深刻建立表面积概念的基础上,通过小组的两两合作,由已建立的知识经验通过合作交流很快得到长方体表面积不同的求法,并从中比较,选择出较简捷的方法,继而得到公式,由于正方体是特殊的长方体,在长方体研究透彻后,轻松的得出求正方体表面积的计算方法。

  框架四:巩固练习

  公式得出后的基本应用,通过老师手中香皂包装盒表面积的计算,及时对知识进行反馈。

  框架五:解释应用

  把所学的数学知识用来解决生活中的实际问题,会加深对数学知识的理解,使孩子们体会到学习数学的巨大作用,并在应用中提升对数学理解的质量,由基本练习到变式练习,再到提升练习的设计,在交流思路的过程中,还渗透了审题意识及习惯的养成,并使孩子们体悟到遇到具体情况进行具体的分析,灵活而又准确的找到解题方法。

  框架六:谈本节课的收获

  孩子们从知识目标上谈,同时从情感态度价值观方面谈自身的体会与收获,对数学这一许多人认为枯燥的学科中产生丰富的情感,激发起孩子们热爱数学的美好情感。

  在这节课中,每一个孩子学习数学的主动性被极大的调动了起来,从问题的提出到交流,整个过程可以看到孩子们都在主动热烈的参与,特别是在探求长方体表面积不同的`求法时,孩子们智慧的火花不时的在课堂上迸发,有的从长方体两个相对的面为一组去分析,得到求法;有的把长方体的上面、前面和左面分为一组去求;还有的孩子从长方体展开的平面图去求,更可贵的是有的孩子能够想到用底面周长乘以高再加上、下两面面积的方法得到长方体的表面积。对问题的思考具有创新性与独特性,思维的深度得以发展。另外,孩子们语言的表述清晰、准确,声音洪亮,手拿学具示范时动作落落大方,谈体会与收获时精彩的发言给老师留下了深刻而美好的印象。从这节课上,可以看出孩子们对数学的情感是积极的,参与是主动的,同时,在达到完成教学目标的同时,数学思维得到了较好的发展,获得了有效学习。

  这节课存在着一些遗憾的地方,例如:在探求长方体表面积方法的交流过程中,由于课堂上的生成情况较多,在处理时由于教学艺术的欠缺,耗时太长,以至于最后的几道提升练习来不及在课堂上完成,更多的精彩没有展现出来,留下了较大的遗憾。从这节课上,我收获了很多,同时,认识到自己在教学中还存在着较多的不足与问题。做为教师,课堂上当孩子们在热烈交流的过程中,要学会调控与把握,与教学目标关系不大时,要适时的把学生拉回来,一节课的时间是有限的。因此,教师要在钻研教材的基础上,要合理安排好时间,使孩子们在每一节课上的数学思维都得以发展与提升。这是一项长期而又艰巨的过程,它需要经验的积累,特别需要教师的教育智慧,教育机智,这需要历练与功夫,在今后的教学中,更要对教材深钻,准确的把握,因为这正是教学艺术的来源。

长方体和正方体教学设计4

  一、教学内容:

  义务教育课程标准实验教科书数学五年级下册第三单元《长方体和正方体的体积》,教材41页42页。

  二、教材分析:

  学生已经探索并掌握长方形、正方形以及其他一些常见多边形的特征,并直观认识长方体和正方体的基础上进行教学的。从研究平面图形到研究立体图形,是学生空间观念发展的一次飞跃。对常见平面图形特征及其周长、面积计算方法的探索,既为进一步探索长方体、正方体这样的立体图形的特征以及表面积、体积的计算方法奠定了知识基础,同时也积累了探索的经验,准备了研究的方法。通过学习长方体和正方体,可以使学生更好地以数学的眼光观察、了解周围的世界,形成初步的空间观念;同时也能为进一步学习其它立体图形打好基础。

  三、教学目标:

  1、使学生经历长方体,正方体体积公式的推导过程,理解长方体、正方体体积的计算公式;初步学会计算长方体和正方体的体积;

  2、培养学生实际操作能力,同时发展他们的空间观念;

  3、在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。

  四、教学重点:探索长方体体积的计算方法。

  五、教学难点:理解长方体和正方体体积公式的推导过程.

  六、教具准备:挂图,若干个1立方厘米小正方块

  七、学具准备:1立方厘米的正方体16块

  八、教学过程:

  一、创设情境,揭示课题

  1、实物引入

  上节课,我们认识了体积和体积单位,谁来说说什么是体积,体积单位有哪些呢?

  昨天的知识你掌握的很好,相信你,前置作业完成的也很认真吧?你准备了几个一立方厘米的小正方体啊?都摆成什么形状了?体积是多少呢?

  根据学生回答,其他学生也动手摆。

  你是怎样知道的?因为这个长方体由4个1立方厘米的正方体拼成,所以它的体积是4立方厘米。图下板书:4立方厘米

  如果再拼上一个1立方厘米的正方体,它的体积又是多少呢?(学生操作)。

  再拼上一个1立方厘米的正方体,这个长方体就含有5个1立方厘米的正方体,它的`体积就是5立方厘米。

  2、揭示课题,可见要计量一个物体的体积,就要看这个物体含有多少个体积单位。今天我们就来学习怎样计算长方体和正方体的体积。(板书:长方体和正方体的体积)

  二、猜想验证,探究新知

  1、提出猜想

  你能不能摆出一个长方体,并计算它的体积?出示表格。学生四人一小组,每组一张表格。

  长宽高正方体个数体积

  长方体1

  长方体2

  长方体3

  长方体4

  请同学们一小组为单位,用1立方厘米的正方体摆出4个不同的长方体,观察摆出的长方体的长、宽、高,把上面的表格填写完整。

  学生活动,师巡视。小组汇报?学生黑板前展示表格,并做详细汇报。引导学生观察表格:观察表格中的数据,从中你能发现什么呢?通过观察比较,同学们有了一个大胆的猜想:长方体的体积等于它的长、宽、高的乘积。这个猜想是否正确呢?我们还要进一步研究。

  (板书:)长方体的体积=长×宽×高。

  2、验证猜想

  用1立方厘米的正方体摆出下面的长方体,各需要多少个?先想一想,再摆一摆。

  1、长4厘米,宽1厘米,高1厘米。

  2、长4厘米、宽3厘米、高1厘米。

  3、长4厘米、宽3厘米、高2厘米

  三个不同的长方体,根据刚才的发现能猜出它们的体积吗?根据回答:4×1×1=4立方厘米4×3×1=12立方厘米4×3×2=24立方厘米

  那究竟对不对呢?让我们再来摆一摆。学生小组讨论,动手操作,师巡视。组织交流,课件出示拼摆后的图形。

  你是怎么摆的?体积是多少?和我们之前的猜想一样吗?

  那如果再给你一个长7厘米、宽4厘米、高3厘米的长方体,一共要用多少个1立方厘米的小正方体?它的体积是多少呢?出示例1

  7×4×3=84立方厘米,所以它的体积就是84立方厘米。

  3、概括公式

  根据刚才的验证,得出之前这个结论是正确的。长方体的体积=长×宽×高,如果用V表示长方体的体积,用a、b、h分别表示长方体的长、宽、高,你能字母表示长方体的体积吗?

  V=abh

  长、宽、高都相等的长方体就是什么图形?你能直接写出正方体的体积公式吗?把你的想法在小组里说一说。

  学生汇报:

  因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中长、宽、高都叫棱长,正方体的体积=棱长×棱长×棱长。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。

  出示正方体,出示公式。

  正方体的体积公式也可以用字母来表示。但用字母表示正方体的体积公式时,还有一些特殊的地方,书上对此作了详细的说明。请大家打开课本看一看。学生阅读课本。正方体的体积:V=a3

  强调写的时候,3要写在a的右上角,并且要写的小一些。

  小训练:完成例2,在练习本上完成,集体订正。

  三、巩固应用

  计算下面长方体和正方体的体积。

  1、长9厘米、宽6厘米、高5厘米

  2、长0.5米、宽2.5米、高0.8米

  3、棱长6分米

  四、课堂小结

  这节课我们一起学习了长方体和正方体的体积计算,你都有哪些收获?

长方体和正方体教学设计5

  教学内容:

  《义务教育教科书·数学》(青岛版)六年制五年级下册第七单元信息窗4。教学目标:

  1、给合具体情境探索、掌握长方体和正方体的体积计算方法,会计算长方体和正方体的体积。

  2、在观察、操作、探索的过程中,提高动手操作能力,进一步发展空间观念。 3.在解决简单的实际问题中,体会数学与生活的密切联系,增强应用意识。

  教学重点:长方体和正方体体积(容积)的计算。

  教学难点:计算方法的探究和理解。

  教具准备:课件。

  学具准备:长方体实物模型(萝卜或土豆)、小正方体数个。

  教学过程:

  一、情境导入

  课件出示教材中的情境图。

  师:同学们,请看屏幕,生活中见过这样的盒子吗?仔细观察,从图中你知道了哪些数学信息?

  学生回答,教师适时评价。

  师:根据这些数学信息,谁能提出什么数学问题?(出示课件)

  学生可能提出:

  (1)可乐箱的体积是多少?

  (2)桃汁饮料盒的体积是多少?

  (3)啤酒箱的体积是多少?

  【设计意图:直接出示情境图,以学生生活中常见的这些盒子直接切入主题,既适合五年级的学生,又和学生的生活紧密联系在一起,让学生体会到数学来源于生活。】

  二、合作探索

  1.怎样求饮料箱的体积呢?

  师引导学生由问题入手,引起学生思考:要求饮料箱的体积,我们就要知道体积的计算方法。那怎样计算体积呢?这些物体的形状是长方体和正方体,那我们就可以借助长方体或正方体学具来研究怎样求长方体和正方体的体积。

  (1)切割学具,自主探究。

  师:那长方体的体积怎样求呢?

  让学生将课前准备的萝卜或土豆切成一个长6厘米、宽2厘米、高3厘米的长方体模型。引导学生先动手切一切,把长方体切成棱长是1厘米的小正方体,也就是1立方厘米的小正方体,切完后再数一数共包含多少个小正方体。

  学生动手操作,最后交流小正方体的个数是36个。

  师:那刚才这个长6厘米、宽2厘米、高3厘米的长方体的体积是多少呢?引导学生明晰:长方体中含有多少个1立方厘米,体积就是多少立方厘米。这个长方体一共含有36个小正方体,它的体积就是36立方厘米。(出示课件展示切割过程)

  (2)拼摆学具,感悟算理。

  师:除了切割,我们也可以用学具来摆一摆。请同学们拿出准备好的.小正方体,摆出长是6厘米、宽是2厘米、高是3厘米的长方体。同桌交流你是怎样拼摆出来的?体积又是多少?

  引导学生交流出:长摆了6个小正方体,摆了这样的2排,摆了这样的3层。体积是36立方厘米。

  师:为什么长摆了6个小正方体?为什么摆这样的2排?又为什么摆这样的3层呢?体积为什么是36立方厘米?

  引导学生交流出:因为长是6厘米,所以一排可以摆6个。宽2厘米,一层可以摆2排,高3厘米,就可以摆这样的3层。摆完后发现一共用了36个小正方体,所以体积就是36立方厘米。(出示课件:摆的过程)

  师:你能列式求出小正方体的个数吗?体积呢?

  生:个数:6×2×3=36(个)所以长方体的体积就是36(立方厘米)(出示课件)师:再用小正方体拼摆长5厘米、宽4厘米、高2厘米的长方体和棱长是3厘米的正方体。并且同位互相交流是怎样摆的,体积是多少,并用算式表示求小正方体的个数。

  汇报交流,并且课件出示过程。

  (3)组间交流,理解算理。

  师:(课件呈现三个拼摆的形体及算式)同学们仔细观察这三个算式,你有什么发现?小组交流。

  引导学生交流:

  长方体所含“体积单位”的数量,就是长方体的体积。

  长方体所含“体积单位”的数量,等于长、宽、高的乘积。

  (4)提升方法,沟通联系。

  师:根据我们刚才的研究,我们得出长方体和正方体的体积怎样进行计算?学生回答,课件呈现体积计算公式和字母表示式。

  师:同学们仔细观察,你们知道什么叫底面积吗?如果知道了长方体或正方体的底面积,又怎样求长方体或正方体的体积呢?为什么呢?(课件闪烁底面)

  学生回答,课件呈现底面积乘高及字母表示式。

  (5)解决情境图中的问题:(课件呈现情境图)

  ①长方体可乐箱的体积是多少?7×3×2=42(dm3)

  ②正方体啤酒箱的体积是多少?3×3×3=27(dm3)

  2.教学容积的计算方法。

  师:(课件呈现桃汁饮料盒及问题)同学们,还记得我们上节课学的容积吗?如果要求桃汁饮料盒可盛饮料多少升,应该知道什么条件?如果盒壁厚度不计的话,你又有什么发现?容积应该怎样求呢?同位讨论。

  引导学生交流得出:(课件呈现)长方体或正方体容器容积的计算方法与体积的计算方法相同,但要从容器里面量长、宽、高,这样才能更准确地算出容器的容积。 10720=1400(立方厘米)1400立方厘米=1.4升

  答:桃汁饮料盒可盛饮料1.4升。

  【设计意图:在问题的引领下,让学生切割学具、拼摆学具,在这种动手操作的过程中,感悟算理,在互相讨论中理解算理。在这种互动中,培养了学生合作交流和探索的能力。由学具操作提升算法并进行沟通,突出算理的教学,渗透数形结合和转化的思想。】

  三、自主练习

  1、基本练习:第1题和第2题(课件呈现)

  2、扩展练习:10题(课件呈现)

  【设计意图:练习设计的层次性,不仅让学生重温和巩固了长方体和正方体体积计算

  方法的探索过程,还让学生用所学到的知识解决生活中的实际问题,让学生更加深切的体会到数学源于生活,用于生活,提高了学生解决实际问题的能力。】

  四、回顾反思

  师:同学们,这节课马上就要结束了,回想一下,你有什么收获?(课件出示教材丰收园图)

  学生可能回答:我会积极学习了。教师适时追问:你哪个环节最积极?(课件“积极”绿苹果图片飞出果篮,同时出示问题:你哪个环节最积极?)

  学生回答。(课件将绿苹果变成红苹果)

  学生也可能回答:我学会提问了。教师适时追问:你都问什么问题了?(课件“会问”绿苹果图片飞出果篮,同时出示问题:你都问什么问题了?)

  学生回答。(课件将“会问”绿苹果变成红苹果)

  师:让我们满载着收获,下课休息一下吧。(课件将红苹果装入果篮)

  【设计意图:以具体的问题引领学生从“积极”“合作”“会问”“会想”“会用”几个方面全面回顾梳理,帮助学生积累一些基本的活动经验,养成全面回顾的习惯,培养自我反思、全面概括的能力。】

长方体和正方体教学设计6

  教学目标

  1.理解并掌握长方体和正方体体积的计算方法.

  2.能运用长、正方体的体积计算解决一些简单的实际问题.

  3.培养学生归纳推理,抽象概括的能力.

  教学重点

  长方体和正方体体积的计算方法.

  教学难点

  长方体和正方体体积公式的推导.

  教学用具

  教具:1立方厘米的立方体24块,1立方分米的立方体1块.

  学具:1立方厘米的立方体20块.

  教学过程

  一、复习准备.

  1.提问:什么是体积?

  2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.

  教师提问:拼成了一个什么形体?(长方体)

  这个长方体的体积是多少?(4立方厘米)

  你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)

  如果再拼上一个1立方厘米的正方体呢?(5立方厘米)

  谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们

  来学习怎样计算长方体和正方体的体积.

  板书课题:长方体和正方体的体积

  二、学习新课.

  (一)长方体的体积【演示动画“长方体体积1”】

  1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆

  出的长方体的长、宽、高.

  2.学生汇报,教师板书:

  教师提问:这些长方体有什么共同点?(体积相等)

  不同点?(数据不同)

  为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——

  12个1立方厘米)

  教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

  师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1

  立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.

  3.【演示动画 “长方体体积2”】

  第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.

  一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层

  第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.

  一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层

  第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.

  一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层

  思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长

  方体的体积有没有关系?是什么关系?

  (长方体的体积正好等于它的'长、宽、高的乘积)

  教师板书:长方体的体积=长×宽×高

  教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

  板书: V=abh.

  出示投影图:

  4.自学例1.

  一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?

  7×4×3=84(立方厘米)

  答:它的体积是84立方厘米.

  (二)正方体体积.

  1.【演示课件“正方体体积”】

  教师提问:此时的长,宽,高各是多少?

  变成了什么图形?

  这个正方体的体积可以求出来吗?

  2.练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)

  棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)

  3.归纳正方体体积公式.

  教师板书:正方体体积=棱长×棱长×棱长.

  用V表体积,a表示棱长

  V=a·a·a或者V=

  4.独立解答例2.

  光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

  (分米3)

  答:体积是125立方分米.

  (三)讨论长方体和正方体的体积计算方法是否相同.

  学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中

  b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.

  三、巩固反馈.

  1.口答填表.

  长

  方

  体

  长/分米

  宽/分米

  高/分米

  体积(立方分米)

  5

  1

  2

  4

  3

  5

  10

  2

  4

  正

  方

  体

  棱长/米

  体积(立方米)

  6

  30

  0.4

  2.判断正误并说明理由.

  ① ( )

  ② ( )

  ③一个正方体棱长4分米,它的体积是: (立方分米)( )

  ④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( )

  四、课堂总结.

  今天这节课我们学习了新知识?谁来说一说?

  五、课后作业.

  1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?

  2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?

  六、板书设计教学目标

  1.理解并掌握长方体和正方体体积的计算方法.

  2.能运用长、正方体的体积计算解决一些简单的实际问题.

  3.培养学生归纳推理,抽象概括的能力.

  教学重点

  长方体和正方体体积的计算方法.

  教学难点

  长方体和正方体体积公式的推导.

  教学用具

  教具:1立方厘米的立方体24块,1立方分米的立方体1块.

  学具:1立方厘米的立方体20块.

  教学过程

  一、复习准备.

  1.提问:什么是体积?

  2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.

  教师提问:拼成了一个什么形体?(长方体)

  这个长方体的体积是多少?(4立方厘米)

  你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)

  如果再拼上一个1立方厘米的正方体呢?(5立方厘米)

  谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们

  来学习怎样计算长方体和正方体的体积.

  板书课题:长方体和正方体的体积

  二、学习新课.

  (一)长方体的体积【演示动画“长方体体积1”】

  1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆

  出的长方体的长、宽、高.

  2.学生汇报,教师板书:

  教师提问:这些长方体有什么共同点?(体积相等)

  不同点?(数据不同)

  为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——

  12个1立方厘米)

  教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

  师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1

  立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.

  3.【演示动画 “长方体体积2”】

  第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.

  一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层

  第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.

  一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层

  第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.

  一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层

  思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长

  方体的体积有没有关系?是什么关系?

  (长方体的体积正好等于它的长、宽、高的乘积)

  教师板书:长方体的体积=长×宽×高

  教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

  板书: V=abh.

  出示投影图:

  4.自学例1.

  一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?

  7×4×3=84(立方厘米)

  答:它的体积是84立方厘米.

  (二)正方体体积.

  1.【演示课件“正方体体积”】

  教师提问:此时的长,宽,高各是多少?

  变成了什么图形?

  这个正方体的体积可以求出来吗?

  2.练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)

  棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)

  3.归纳正方体体积公式.

  教师板书:正方体体积=棱长×棱长×棱长.

  用V表体积,a表示棱长

  V=a·a·a或者V=

  4.独立解答例2.

  光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

  (分米3)

  答:体积是125立方分米.

  (三)讨论长方体和正方体的体积计算方法是否相同.

  学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中

  b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.

  三、巩固反馈.

  1.口答填表.

  长

  方

  体

  长/分米

  宽/分米

  高/分米

  体积(立方分米)

  5

  1

  2

  4

  3

  5

  10

  2

  4

  正

  方

  体

  棱长/米

  体积(立方米)

  6

  30

  0.4

  2.判断正误并说明理由.

  ① ( )

  ② ( )

  ③一个正方体棱长4分米,它的体积是: (立方分米)( )

  ④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( )

  四、课堂总结.

  今天这节课我们学习了新知识?谁来说一说?

  五、课后作业.

  1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?

  2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?

  六、板书设计

长方体和正方体教学设计7

  闫慧

  一、教学构思

  长方体和正方体是学生十分熟悉的立体图形,在生活中经常要求解它们的表面积,例如:计算做一个长方体形状的鱼缸需要多少材料,《长方体和正方体的表面积》教学设计及反思。虽然学生已经学会了如何计算长方体的表面积,但是由于学生缺少生活实践经验,导致计算出来的结果不符合实际要求:多加了一个上面的面积。一个看似很简单的问题,学生似懂非懂:鱼缸的外形是什么样的?长方体吗?计算所需材料的面积是否就是计算这个长方体的表面积?鱼缸没有哪一个面,所以实际上是计算哪几个面的总面积?如何计算这些面的面积?《长方体和正方体表面积》,在教学中根据学生的实际情况、教材内容和教育资源引导学生对于以上几个问题进行探索、发现,在认识矛盾冲突是如何产生的以及如何解决问题的驱使下开展探究活动,让学生去解决鱼缸制作的问题来开展教学。当学生经历了探索发现的过程,就学会了如何用所学的知识运用到生活中去实践,并且培养了学生分析问题、解决问题以及表述能力。同时学生在学习中体会到了探究、发现问题和灵活地解决实际问题的乐趣,充分体现了学生在教学中的主体学习的地位。

  二、教学目标:

  1.使学生理解和掌握正方体的表面积的计算方法,能够正确计算正方体的表面积。

  2.使学生能够根据实际情况计算长方体和正方体里几个面的总面积,进一步培养学生的探索意识和空间观念,提高解决简单实际问题的能力。

  三、教学活动过程:

  (一)引导学生学习正方体表面积的计算方法 :

  1、回忆:上节课我们学习了长方体表面积的概念以及如何计算长方体的表面积,那么谁来说一说什么叫做表面积以及如何计算长方体的表面积?

  2、联想:拿起(一个正方体的模型,手摸着面)提问:正方体的面有什么特点?正方体的表面积是指什么?正方体里每个面的面积怎样算?所以可以怎样计算正方体的表面积?

  3、归纳引入新课:正方体的6个相同的正方形面的总面积就是正方体的表面积。正方体的表面积怎样求呢?这就是这节课的主要内容(板书课题)

  4、教学例2:提问:题目条件是什么,让我们求什么?求至少要多少平方厘米硬纸板就是求正方体的什么?你会算吗?

  (有同学提出可以用长方体的表面积计算公式,因为长方体是一种特殊的正方体,所以可以这么做。有小部份同学同意这个观点,但是通过计算后认为方法太繁,可以用简便方法。)

  师:小结:正方体的6个面是面积相等的正方形,所以求它的表面积只要用棱长乘棱长求出一个面的面积,再乘6。

  二、说明:

  我们已经学会了计算长方体和正方体的表面积。在实际生产和生活过程中,有时不需要计算6个面的饿总面积,只需要计算某几个面的总面积。这就要根据实际情况思考要求哪几个面的面积和,并思考每一个面的面积怎样算,教学反思《《长方体和正方体的表面积》教学设计及反思》。如例3。

  三、鱼缸的制作问题:

  1、帮助学生回忆鱼缸的形状(长方体,但是没有上面)

  2、如何计算所需材料的面积?(就是求这个长方体的表面积,但是要减去上面的面积)

  3、教学例3

  四、(出示长方体模型,把它看成鱼缸的模型)

  1、鱼缸缺少哪个面的玻璃?(上面)

  2、要求需要多少平方分米玻璃,要算几个面的面积和?哪几个面有相同的两个?哪个面只有一个?如何计算每一个面的面积?(5个面,没有上面,左面=宽*高前面=长*高底面=长*宽)

  3、指名学生板演,集体订正。

  4、改变题目要求,使得长方体的宽和高长度相等,观察模型,你发现了什么现象?怎样计算比较简便?

  学生1:长方体的宽和高相等时,它的左面和右面是两个完全相同的正方形。

  学生2:长方体的宽和高相等时,它的前、后、上、下四个面是完全相同的长方形。

  学生3:这个长方体没有上面,所以只要算5个面的面积,它的前面、后面、下面这三个面完全相同

  说明:宽和高长度相等时,长方体的前面、后面、下面这三个面完全相同(鱼缸没有上面),所以只要算出一个面的面积乘以3就可以了,在加上左面和右面的面积,就是鱼缸所需材料的面积数量。

  五、练习

  书P42页练习二的第一、二 题。

  (要计算长方体某几个面的面积之和,关键是要知道如何计算长方体每一个面的面积,这些练习可以帮助学生进行巩固,而且通过指名学生口答练习,可以及时了解学生的掌握情况,有利于以后教学的实施)

  课后反思:

  一、积极参与,发现问题.

  在教学中要确立学生的主体地位,那么在教学中必定要注重学生经历学生研究的过程。在活动中,一方面要巩固学生所学的知识,另一方面要使得学生通过活动,根据所学的知识发现问题,让学生自己提出问题,猜测结果,同时教师进行适当引导。在整个活动过程中,要让每一个同学都参与这种研究学习的过程,通过本身的实践活动去寻求问题的答案,形成科学的世界观和价值观,利用本身所掌握的知识提高科学探究的能力。在《长方体和正方体的表面积》一课的教学中,我首先帮助学生回忆上节课的内容,提出相应的问题进行复习巩固,同时提出新问题——正方体的.表面积是如何求解的?然后让学生根据所学的内容进行合理的猜测,并且举例证明观点是否正确,最后由我来归纳总结。设计探究问题:1.你能根据表面积的概念说一下什么叫做正方体的表面积吗?2.如何计算正方体的表面积?还进行全班讨论,正方体表面积计算方法和长方体表面积计算方法的区别与联系。通过这种研究性的探讨以及对比的方式,教好地完成了教学任务。学生从本质上理解了表面积的概念而且学会了如何根据实际情况求解长方体某几个面的面积之和,使得学生真正融入到课堂的教学中,体现本身的学习自主地位和主人翁感。

  二、以事实为依据,解决问题

  在制作鱼缸的问题中,首先帮助学生回忆生活中的实物,然后出示简易模型进行教学。先问学生鱼缸有没有盖子,接着启发学生猜想如何计算制作鱼缸所需材料的面积数量,从而引出问题,将学生的注意力集中在如何求解长方体某几个面的面积之和的问题上来,这就激发了学生的求知、探索欲望。通过教学引导发现问题后,利用事实为依据,和学生一起解决问题。让学生经历一系列的探讨研究过程,从不同角度发现问题。同时提出新的问题,让学生带着问题离开教室,对数学的学习保持一种新鲜感和神秘感。

  三、巩固知识,归纳要点

  改变题目的要求,发现新问题,全班讨论。经过多位同学叙述,他们便发现某些同学的认识是片面的,所叙述的内容是不完整的,所以结论不完全正确。要想得到全面正确的结论,就要用充分的事实来说话,资料这样才能得到正确的结论。针对某些典型的错误观点可以进行讨论,推翻,说出问题的结果和原来预测的不同点(区别),然后和学生一起总结,加深印象。同时正确评估学生的观点,通过练习,巩固新旧知识,思考与讨论问题的答案,大胆的进行猜测,做好记录,最后归纳要点或者规律。新课程强调:教师是科学学习活动的组织者、引领者和亲密的伙伴。我遵循这些理念开展以引导、合作、探究的学习方式进行教学,探究气氛也更活跃,学生的科学探究能力有了一定提高。

  四、教学需改进之处:

  教师要进一步做好“六认真”工作,提高教学能力,培养学生的叙述能力和运用能力,使得教学工作能够让学生学以致用,全面发展,成为一个“十”字型人才。

长方体和正方体教学设计8

  教学目标:

  1、让学生理解并掌握长方体和正方体的表面积的含义和计算方法,能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。

  2、让学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。

  3、让学生进一步感受立体图形的学习价值,增强学习数学的兴趣。

  教学重点难点:

  长方体和正方体表面积的含义及其计算方法的推导过程。

  教学准备:

  长方体、正方体模型。

  教学过程:

  一、猜测导入

  出示两个纸盒(一个长方体、一个正方体)。

  提问:长方体和正方体有哪些特征?

  谈话:这两个纸盒,看起来大小差不多,请你猜一猜,做哪个纸盒用的硬纸板多?

  有什么方法可以证明你的'猜测是否正确?(引导可以计算它们所用的硬纸板的面积,然后再比较)

  二、探究新知

  1、引导探究长方体表面积的计算方法。

  (1)出示问题:如果告诉你这个长方体纸盒的长、宽、高,你能算出做这个长方体纸盒至少要用多少平方厘米的硬纸板吗?

  追问:做这个长方体纸盒至少要用多少平方厘米的硬纸板,与这个长方体各个面有什么关系?可以解决这个问题吗?

  教师启发:“做这样一个长方体纸盒要用多少平方厘米的硬纸板”就是要计算这个长方体的表面积.首先要找出每个面的长和宽.根据长方体的长、宽、高可以计算每个面的面积,把每个面的面积合在一起就是表面积。

  (2)学生独立列式,指名汇报,并根据学生回答进行板书。

  解法一:6×5×2+6×4×2+5×4×2=60+48+40=148(平方厘米)

  解法二:(6×5+6×4+5×4)×2=(30+24+20)×2=74×2=148(平方厘米)

  答:至少要用148平方厘米的硬纸板。

  (3)比较小结:仔细观察这两种方法,体现了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么?(要根据长、宽、高正确找出3组面中相应的长和宽)这两种解法之间有什么联系?

  2、自主探究正方体表面积的计算方法。

  (1)谈话:根据长方体的特征,我们解决了做一个长方体纸盒至少要用多少平方厘米硬纸板的问题,那么这个正方体纸盒的问题你会解决吗?

  (2)学生独立尝试解答,提醒学生根据正方体的特征进行思考。

  (3)组织交流反馈。

  3、揭示表面积的含义。

  谈话:我们在求做长方体或正方体纸盒至少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,由此你知道什么是长方体或正方体的表面积吗?

  揭示:长方体或正方体6个面的总面积,叫做它的表面积。

  (板书课题:长方体和正方体的表面积)

  三、练习巩固

  完成课本“练一练”以及练习四第一、二、五题。

  四、全课小结

  谈话:通过今天的学习你有什么收获?你能概括性的语言说一说怎样求长方体和正方体的表面积吗?

  五、布置作业

  1、做练习四第三、四题。

长方体和正方体教学设计9

  教学目标:

  1、使学生通过观察、操作等活动认识长方体、正方体的面、棱、顶点以及长宽高(棱长)的含义,掌握长方体和正方体的特征。

  2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。

  重点难点:认识长方体、正方体的面、棱、顶点以及长宽高(棱长)的含义,掌握长方体和正方体的特征。

  教学准备:

  1、这节课是在学生已经直观认识长方体和正方体的基础上,引导学生进一步探索成方体和正方体的特征。教学第10-11页的例

  1、例2,完成随后的练一练及练习三1-5题。

  2、光盘

  3、长方体模型、框架,课件、长方体形状的纸盒等

  教学过程:

  一、导入新课:

  师:我们已经学习了一些平面图形、长方形、正方形、三角形、平行四边形和梯形,都是平面图形。

  今天我们学习立体图形。

  像墨水瓶、罐头盒、魔方玩具、牙膏盒、排球、肥皂盒、台灯罩,这些物体的形状都是立体图形,(出示这组物体的课件)今天我们就来研究这里面的——长方体和正方体。

  二、探究新知:

  1、说说你见过的哪些物体的形状是长方体?

  2、出示例1:

  拿一个长方体的纸盒来观察:

  ⑴长方体有几个面?每个面是什么形状?哪些面完全相同?从不同角度看一个长方体,最多能同时看到几个面? 指导学生观察学具,直观地回答上面的问题。

  得出: 长方体是由6个长方形(也可能有两个相对的面是正方形)围成的立体图形。

  在一个长方体中,相对的面完全相同。

  ⑵两个面相交的边叫做棱。长方体有多少条棱?量出每条棱的长度,哪些棱的长度相等?

  指导学生观察、测量。

  得出: 相对的棱的长度相等

  ⑶三条棱相交的点叫做顶点,长方体有多少个顶点? 学生在小组里观察交流,指名回答。

  师:因为最多可以看到三个面,所以我们可以这样来画长方体。教师板演画法。

  3、请学生对照着长方体说说长方体的特征。

  4、出示铁丝做棱,的长方体框架,

  观察一下:

  ⑴它的12条棱可以分成几组?怎样分?

  ⑵相交于同一顶点的三条棱长度相等吗? 通过观察得出:

  相交于一个顶点的`三条棱的长度分别叫做长方体的长、宽、高。 它的12条棱可以分成4组 。

  引导学生总结出上面的两个问题,并回答。

  5、选择一个长方体实物,说说长方体的特征有哪些,量出它的长、宽、高。

  6、出示例2 正方体有几个面、几条棱、几个顶点?它的面和棱各有什么特征? 师:长方体和正方体有哪些相同点,有哪些不同点呢? 同桌互相说一说,指名汇报。

  7、选择一个正方体实物,量出它的棱长。

  三、巩固练习

  完成练习三1-4题。 第1题引导学生说说第三个图形有什么特别之处。你是怎样知道的? 第4题可先让学生判断出摆出的是长方体还是正方体,互相指一下长、宽、高(或棱长)的位置,再说说分别是多少厘米。

  四、全课小结

  通过这节课的学习你有哪些收获?

  五、作业

  完成练习三第5题。 尝试自己做一个长方体

长方体和正方体教学设计10

  一、教学目标:

  1、经历观察、交流、归纳等认识长方体和正方体特征的过程。

  2、知道长方体、正方体各部分名称,了解长方体、正方体的特征以及长方体、正方体之间的关系。

  3、积极主动参与数学活动,在总结和归纳长方体、正方体特征及关系的过程中,获得积极的学习体验。

  二、教学重点:掌握长方体和正方体的面、棱、顶点的特征,认识其长、宽、高及长方体和正方体之间的关系。

  三、教学难点:形成长方体和正方体的概念,发展学生的空间观念。

  四、教学准备:每个学生准备一个长方体、一个正方体实物,教师准备长方体、正方体模型,长方体、正方体特征表格,课件。

  五、教学过程:

  (一)、创设情境

  师:同学们,老师手中拿的这个盒子,谁知道它是什么形状的?(长方体)那么这个盒子的形状谁知道呢?(正方体)

  师:真不错,老师还为大家准备了一张图片,你能从中找出长方体或正方体的物体吗?(出示图片,指生回答)

  师;同学们说得很好,在我们的生活中,你还见过哪些物体的形状是长方体或正方体?

  生自由回答:大部分药盒是长方体,香皂包装盒是长方体,骰子是正方体,粉笔盒是正方体、讲台是长方体。

  师;看来同学们都是生活中的有心人,我们已经认识了长方体和正方体,这节课我们就来共同研究长方体和正方体有什么特征。(板书课题:长方体和正方体的特征)

  (二)、认识特征

  1、师出示长方体模型。

  师:(师拿模型)关于长方体,你还知道些什么?

  生:我知道长方体有平平的面。(师在黑板上课前画好长方体和正方体)(板书:面)

  师:再看一看两个面相交处有什么?

  生:有一条边。

  师:我们把两个面相交的'这条边叫做棱。(板书:棱)

  师:请同学们看一看三条棱相交处有什么?

  生:尖。(或点)

  师:三条棱相交的点叫做顶点。(板书:顶点)

  师:请同学们拿起自己准备的长方体,摸一摸它的面、棱、顶点。

  学生按要求摸一摸。

  2、师:下面我们就从面、棱、顶点这三个方面来研究长方体的特征。自己数一数你手中的长方体有几个面?

  生:长方体有6个面。

  师:你们同意吗?谁来说一说你是怎样数的?

  生1:我是转圈数,再数左、右两边的两个面,共6个面。

  (边说边演示)

  生2:我是按上面、下面、前面、后面、左面、右面的顺序数的,共6个面。

  (边说边演示)

  师:她按上、下、前、后、左、右的顺序数,这样既不重复,也不容易漏数,这个方法不错,你们认为这些面有什么特征?

  生可能回答:

  生1:这6个面都是长方形。

  生2:上、下两个面大小相等。

  生3:左、右两个面大小相等。

  生4:前、后两个面大小相等。

  生5:老师,我和某某有不同的意见,我手中的长方体不是6个面都是长方形的,有2个面是正方形的(师拿着展示)

  师:也就是说长方体的6个面不一定都是长方形,也有可能有两个面是正方形的,刚才同学们提到的上下面,前后面,左右面都是分别相对的,我们称它们为相对的面。那么上下面、前后面、左右面的大小是否真的相等呢?请同学们以同桌为单位,共同验证一下这些相对的面的大小是否真的相等呢?

  学生同桌合作交流并集体汇报:

  生1:我们是用尺子测量的,通过测量我们发现相对的面的长、宽、都相等,所以面积就相等。

  生2:我们先在纸上描出底面的长方形,再把上面的长方形放在上面,发现两个长方形一样大。

  师:同学们真善于动脑筋,用不同的方法验证了长方体相对的面是否相等。

  师:我们也可以用剪的方法,就像这样(指课件)将各个面分开,然后看相对的面能否完全重合,由于时间关系,我们就不在课上完成了,

  下面我们来看一下大屏幕,(师用课件演示)

  通过我们的共同验证,得出结论:长方体有6个面,相对的面完全相等。(课件出示)

  师:(师拿物体说)这是一种比较特殊的长方体,它有两个面是正方形的,那么其他的四个长方形的面积就完全相等。也就是说一个长方体最少要有4个面是长方形的。

  3、师:我们再来看这个长方体,它是用细棒和珠子做成的,数一数几颗珠子?

  生:8颗珠子。

  师:这些珠子就是长方体的(顶点)

  师:那么长方体有几个顶点?

  生:长方体有8个顶点。

  师:(课件)长方体三条棱相交于一个顶点,一共有8个顶点。

  师:再数一数这个长方体用了几根小棒?

  生:用了12根小棒。

  师:这些小棒就是长方体的(棱)

  师:谁来说一下长方体有几条棱?

  生:长方体有12条棱。

  师:长方体的棱有什么特点?

  生1:这12条棱可以分成3组,相对的棱长度相等。

  生2:这12条棱可以分成3组,每组4条棱长度相等。

  师指名一生到前面演示

  (师用课件演示说明)

  师:(结合课件),请同学们仔细观察,同一颜色的小棒方向都是一致的,为了方便记忆,我们也可以把同一方向的棱归为一组,共有3个不同的方向,分为3组,每组4条棱的长度相等。

  4、师:现在请大家思考一个问题,当长方体所有棱的长度都相等时,它会变成什么图形?(正方体)(课件)下面请同学们拿出自己准备的正方体,认真观察,根据长方体的特征,结合大屏幕上的问题,同桌合作研究正方体的特征。(师出示课件)

  学生观察,讨论。

  5、师:谁来说一说正方体有哪些特征?

  生1:正方体也有6个面,6个面都是正方形的。

  生2:正方体所有的面完全相等,

  生3:它有12条棱,所有的棱的长度都相等。

  生4:有8个顶点。

  师:同学们真聪明,下面咱们一起来看大屏幕。

长方体和正方体教学设计11

  教学目标:

  1. 通过观察、猜想、操作、想象、推理、探索等数学活动,自主探索长方体、正方体关于面、棱、顶点的特征,理解长方体长、宽、高的含义。

  2. 立足想象与操作,自主探索并发现长方体顶点、棱、面之间的关系,理解长方体和正方体的关系。

  3. 在自主探索长方体和正方体特征的过程中,培养学生的空间观念和推理能力。

  教学重点:把握特征,培养空间观念。

  教学难点:空间观念的培养。

  教学准备:课件、模型、搭长方体的材料等。

  教学过程:

  一、导入

  师:同学们,今天老师给大家带来了很多的数学图形,你认识它们吗?(认识)

  师:那这个图形叫什么?这个呢?这个……

  师:在这些图形里,你能分辨哪些是平面图形,哪些是立体图形吗?(能)

  师:你上来试一试。请将是平面图形的拖到左边,是立体图形的拖到右边。

  师:同学们,他做的对吗? (对)

  师:很好,今天,我们就一起进入立体图形的世界,更深入的认识一下长方体和正方体。(板书课题:长方体和正方体的认识)

  二、新授

  1.说一说生活中的长方体和正方体

  师:同学们,你们在生活中见过哪些物体的形状是长方体或正方体的?

  师:我们周围许多物体的形状都是长方体或正方体(正方体也叫立方体)。

  2.认识长方体

  师:我们先来认识一下长方体。请同学们看,在长方体中,老师手摸得这些平平的地方叫做长方体的面,然后面与面相交的这条线就叫做长方体的棱,三条棱相交的这个点叫做长方体的顶点。

  师:同学们的桌上都有一个长方体的物体。接下来,请同学们带着下面这些问题摸一摸你的长方体。

  (1)长方体有( )个面。

  (2)每个面是什么形状的?

  (3)哪些面是完全相同的?

  (4)长方体有( )条棱。

  (5)哪些棱长度相等?

  (6)长方体有( )个顶点。

  师:你们有答案了吗?我们一起来看一下。

  师:通过刚刚的活动我们知道了:长方体一般是由6个长方形(特殊情况下有两个相对的面是正方形)围成的立体图形。在一个长方体中,相对的面完全相同,相对的棱长度相等。

  3.制作长方体,认识长、宽、高

  交流:

  师:同学们,刚刚我们初步认识了长方体,你们想亲自动手用小棒做一个长方体吗?(想)

  师:那想要搭成一个长方体,需要几根小棒呢?(12根)

  师:为什么是12根?

  师:给你12根一定能搭成吗?

  学生思考并回答

  师:老师这里有4种方案,请大家思考一下,哪些一定能搭成长方体,哪些一定不能,为什么?

  操作:

  师:同学们想好了吗?我们一起来试一试。

  出示任务要求:

  (1)选择其中的一种方案,小组合作搭一个长方体。

  (2)进一步思考其他方案可不可以搭成,为什么?

  (3)思考在搭长方体的过程中自己的发现。

  学生操作

  反馈:

  师:同学们完成了吗?请问哪些方案不能搭成长方体?

  方案2

  师:这些方案都用了12根小棒,为什么唯独2号方案不可以搭成长方体?

  预测1:2号方案黄色小棒不够了,而蓝色的多了一根。

  预测2:每种长度都应该是4根才够,否则搭不成。小结:长方体有12条棱,分成3组,每组都是4根。

  师:哪些学生是按方案1搭的长方体。(拿一个作品展示)你们在用这个方案搭长方体的过程中,你们有哪些发现?

  预测1:每种长度都有4根。

  引导学生指一指模型并板书:分成3组,每组4根。

  预测2:长度相同的4根小棒,放在相对的位置。

  板书:位置相对。

  预测3:每组相等的小棒,都是平行的。

  师:(利用模型引导学生观察)水平面相对的棱互相平行;

  垂直面相对的棱互相平行;

  侧面相对的棱互相平行。

  预测4:每个顶点上有3条长度不等的棱。

  师引导:在这里,相交于一个顶点上有3条棱,这三条棱的.长度分别叫做长方体的长、宽、高。(把长方体水平放置)一般情况下,底面较长的那条棱是长,较短的是宽,垂直的是高。谁来指出白板上这个长方体的长、宽、高?

  师:同学们,请看模型。老师把长方体的前面和后面拆下来看一下,我们会发现它们的长与宽都是用的一样的小棒,所以前面和后面是一样的长方形,同样的道理,左边和右边是一样的长方形,上面和下面是一样的长方形。我们再一次发现长方体有6个面,并且相对的面大小相同。

  师:接下来,我们来看一下方案3搭成的长方体,哪些同学是用方案3搭的?

  师:(出示方案3)这个长方体与与用方案1搭的长方体相比,有什么特别之处吗?

  预测:方案1搭的长方体6个面都是长方形,方案3搭的长方体有2个面是正方形。

  师:是的,这是方案1的长方体,我们可以将它怎样变化,得到方案3搭的长方体呢?(课件演示)

  师:再进一步思考,我们能不能继续把这个长方体变成正方体呢,有什么办法?

  学生反馈,师动态演示

  师:这么特殊的长方体即正方体,有哪些小组搭出来了?

  师:(展示方案4所搭成的正方体)正方体与长方体相比有什么相同,什么不同?

  学生交流长方体与正方体的相同点与不同点。

  师:根据你们的回答,老师画出了这幅图,这个图是什么意思?在以前学习中有没有这样的图?(出示长方形与正方形的集合图,体会两者关系。)

  师:其实,正方体是长、宽、高都相等的特殊的长方体。

  三、练习巩固

  略

  四、课堂小结这节课你学到了什么?

  略

长方体和正方体教学设计12

  教学目标:

  1、使学生通过观察、操作等活动认识长方体正方体以及它的直观图,知道长方体的面、棱、顶点以及长、宽、高的含义,掌握长方体的基本特征,以及正方体和长方体的关系;

  2、使学生在具体情境中,经历猜想、操作、验证、讨论、归纳等数学活动,培养学生的观察、概括能力及空间观念,发展数学思考;

  3、使学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好数学的信心。

  教学重点:

  通过多种数学活动探究长方体、正方体的特征;充分认识直观图;理解长方体的长、宽、高与每个面的长、宽的区别。

  教学难点:

  充分认识直观图;建立“立体图形”的概念,形成表象.

  教学过程:

  一、以旧引新,激发兴趣

  1、图形王国里在开运动会,让我们一起去看看都有哪些图形参加?噢!来了很多的图形,谁给它们分分类?课件演示(说说分类的依据)。

  2、老师拿的这些物体属于立体图形中的哪一种?(长方体)

  引入:那对于长方体、正方体你了解多少呢?今天我们就再一次来领略,探究长方体、正方体的奥秘。(教师板书:长方体的认识)

  同学们举生活中长方体或近似长方体的例子。

  二、探究新知:

  (一)认识长方体特征:

  1、认识长方体各部分名称

  认识长方体的面、棱、顶点。

  让学生指着模型说一说哪些是面?哪些是棱?哪些是顶点

  2、认识长方体的特征(分组合作学习)

  (1)四人一小组合作,一边操作一边思考:

  师:同学们根据自己准备的学具看一看数一数量一量剪一剪比一比小组合作学习。(教师对学生的操作应给予充分的肯定及鼓励。)

  (出示探究表):

  1、长方体有几个面?你是怎么数的?每个面是什么形状的?哪些面是完全相同的?你怎么知道的?

  2、长方体有几条棱?你是怎么数的?哪些棱长度相等?你怎么知道的?

  3、长方体有几个顶点?你来数一数。

  师:自己先看一遍,有不理解的吗?强调“完全相同”的含义,即形状、大小都相同。

  (2)学生以小组为单位讨论交流

  (3)老师找学生分组板书面棱顶点的特征。学生汇报结果。

  师:谁能把你们的学习结果汇报一下。

  生:长方体有6个面,每个面都是长方形,也可能有两个相对的面是正方形。(面怎样数不重复不遗漏?)

  师:你们小组能派个代表给大家数一数这6个面吗?

  生数。师引导有序的数。

  师:你有这样的长方体吗?(有,出示)哪是相对的面?(指实物回答)

  生:长方体相对的面面积相等。

  师:说说棱的特点。

  生:长方体有12条棱。师:你来数一数吧。(棱怎样数不重复不遗漏?)生:??

  师:哪些棱长度相等?

  生:相对的4条棱长度相等。(教师演示“相对棱相等”)(如果学生表述不出来,引导学生回忆在概括哪些面完全相同时是怎样说的。)

  师:哪是相对的棱?生指。

  师2:你用什么办法来证明相对的棱长度相等?

  生1:用尺子量的。

  生2:(出示:长方体棱的框架)如果相对棱不相等,这个长方体就会变形了。师:噢,你用的是反证法来说明。

  师:谁再说说长方体的顶点?(长方体有8个顶点)(演示“顶点”)生数。

  3、认识长方体的长宽高。

  (1)小组合作以最快的速度做一个长方体。

  师:如果让你做一个长方体框架你打算准备几根小棒?(12根)12根一样长的小棒吗?生思考,汇报。

  (2)合作做一个长方体。思考:12条棱可以分为几组?

  (3)展示作品,并交流分组。

  (4)揭示长方体的长宽高。

  师指出:相交于一个顶点的三条棱的长度分别叫长、宽、高。通常把水平方向的两条棱中较长的叫做长,较短的叫做宽,把竖直方向的一条棱叫做高。(课件演示)拿长方体模型横放、竖放、侧放,并让学生指出在不同摆放的情况下的长、宽、高,告诉学生不管相交于哪个顶点的三条棱,都可以叫做这个长方体的长、宽、高。问:长方体有几条长几条宽几条高?

  (二)、认识正方体

  1、师:认识了长方体,那正方体它又有什么特征?它与长方体有没有关系呢?

  2、独立探索正方形特征:每个同学拿出自己的`正方体纸盒,通过前面小组合作探索长方体特征的方法,自己独立探索正方形的特征,并完成提单上表格的内容。

  3、完成后指名回答,并板书。

  4、课件演示正方体的特征,加深对正方体特征的认识。

  (三)长方体、正方体的关系

  1、正方体、长方体相同点与不同点。

  (1)师:我们一对长方体、正方体进行了认识,认真观察课件上的表格,你发现了什么?

  (2)根据学生的回答,课件出示正方体、长方体相同点与不同点。

  2、长方体、正方体的关系

  (1)师:通过你们的观察和探究,长方体和正方体之间有何关系?

  (2)根据学生的回答,课件出示集合图。

  三、练习巩固,深化认识:

  引导学生认识特殊长方体面、棱特征,深化认识。

  1、完成练一练,先同桌交流在指名2人汇报。

  2、口答:说出下面每个长方体的长、宽、高各是多少.

  3、激疑:对于最后一幅图表述你有什么看法?

  (预设:最后一个图形不是长方体而是正方体,板书完整课题:正方体)

  4、问:你觉得用什么方法可以把一个长方体变换成正方体?

  长方体和正方体有什么样的关系

  四、巩固练习

  师:同学们,今天通过你们的合作探究,认识长方体和正方体的特征,大家都很棒。下面我们进行几个练习,检验一下同学们对所学知识的掌握情况。

  小小法官会判断。

  (1)长方体的六个面一定是长方形(×)

  (2)长方体有6个面,每个面有4条棱,共四六二十四条棱。(×)

  (3)一个长方体,它有两个面是正方形,那√)么它有四个面面积相等;

  ((4)长方体有6个面,12条棱,8个顶点。(√)

  一、填空题。

  1、长、宽、高都相等的长方体叫正方体,正方体是都特殊的长方体,6个面都是正方形,6个面的面积相等,12条棱的长度都相等。

  2、左图是正方每个面的面积是648厘米体,也叫做立方体平方厘米;每条棱厘米。是8厘米8厘米;它的棱长总和是96正方体棱长总和=棱长×1

  3、一个正方体的棱长总和是24厘它的棱长是8厘米米,2厘米。

  1、用铁丝焊成一个长20厘米,宽15厘米,高10厘米的长方体框架,至少需要铁丝多少厘米?6

  2、思考?一个长方体棱长之和是36厘米,长是4厘米,宽是3厘米,高是多少厘米?

  五、全课总结。

  很多时候,大家的进步就像一张纸,的厚度一样,微不足道,甚至难以发现,但我们不应该忽视它的存在,只要脚踏实地,日积月累,一定会收获更大成功,成功其实离我们很近,它就是点点滴滴人进步。

长方体和正方体教学设计13

  【教学目标】

  1、通过整理、复习,使学生进一步理解长方体和正方体有关知识及内在联系,并能灵活运用。

  2、在学生对这些形体认识和理解的基础上,进一步培养空间观念。

  3、让学生在解决实际问题的过程中,感受数学与生活的联系,体会数学的价值,进一步培养学生的合作意识和创新精神。

  【教学重点灵活运用知识解决实际问题。

  【教学准备】牛奶、

  【教学流程】

  一、创设情境,导入新课

  1、师:同学们,五一假期刚刚结束,谁来谈一谈这七天你去哪儿旅游了?

  学生自由畅谈。

  老师也利用假期到国际大都市——上海旅游了一趟,并有幸随旅行团参观了上海光明集团牛奶的整个生产流水线,机会非常难得,同学们想不想跟老师一块去看一看呢?

  2、课件播放生产过程

  师:看了刚才这些,请同学们想一想,在生产牛奶的整个过程中,工人们应该考虑哪些数学问题?

  (学生可能会说:做一个盒子要用多少材料,一个牛奶盒可装多少牛奶,一只箱子可装多少盒牛奶……)

  3、师:同学们考虑得非常全面。在生产的过程中,有些问题就用到了长方体和正方体的`知识。这节课我们就来进行整理和复习。

  (板书:长方体和正方体的复习)

  二、整理复习,形成网络

  1、自主回忆

  师:应该复习哪些方面呢?(生说师写:特征、表面积和体积)

  看着上面的表格回忆一下,可以一个人轻轻地说,也可以和同桌一起说。

  2、交流评价

  谁先来说说你已经知道了哪些知识?

  (指名说,指名写)

  名称特 征表面积体积

  长方体有6个面,一般是长方形,相对的两个面的面积相等;有12条棱,相对的棱的长度相等;有8个顶点。S=2(ab+ah+bh)V=abh

  正方体有6个面都是正方形,且面积相等;有12条棱,棱长都相等;有8个顶点。S=6a2V=a3

  3、归纳总结

  长方体和正方体有什么联系?

  (正方体是一种特殊的长方体。它们的体积都可以用底面积乘高来计算。)

  师:刚才我们对有关知识进行了系统的整理,下面请同学们运用这些知识帮助工人叔叔来解决遇到的几个问题。

  三、应用拓展解决问题

  1、基础练习

  (1)师:由于天气太热,牛奶容易变质,如果有小包装就好了。同学们,请你当回小设计师,为你们小组这6盒牛奶设计一个小箱子吧。

  假如按照这样的排列方式装进一个纸箱(课件出示),请你算一算:制作这样一个纸箱至少需要多少纸板?这个纸箱的体积是多少?

  (2)在算之前,你必须要知道什么条件?(小盒的长、宽、高)

  那么就动手量一量吧,最好保留整厘米数。

  量好了就告诉老师,我们统一长度。

  (3)学生尝试解答,汇报方法,集体评价。

  你是怎么求的?还有别的想法吗?

  (估计学生在求表面积时会出现错误)

  (4)下面三幅图,哪一幅折起来能成为一个牛奶盒?

  2、开放练习

  还有其他摆法吗?6人小组动手摆一摆,记下长、宽、高,再算一算表面积与体积,填在表格里。

  学生活动,教师参与。(让他们挑选一种摆放好,加以展示)

  汇报交流,生说师记。

  方法长(厘米)宽(厘米)高(厘米)表面积(平方厘米)体积(立方厘米)

  1

  观察表格,你发现了什么?(从中可以得出结论:长、宽、高越接近,即越接近于正方体,表面积越大;体积不变。)

  3、拓展练习

  (课件出示)如果给你很多牛奶盒继续摆,一直摆成一个正方体为止,这个正方体的体积最小是多少立方厘米?

  (棱长如何确定?取长宽高的最小公倍数)

  至少需要多少个盒子?(一层摆几个,摆几层)

  四、延伸创新

  师:刚才我们为6盒牛奶又设计了5种包装方法,回去请同学们试着画一画这个小盒子的展开图。

长方体和正方体教学设计14

  教学目标

  1、使学生理解长方体和正方体表面积的意义,掌握长方体表面积的计算方法、

  2、培养学生的抽象概括能力、推理能力和思维的灵活性,发展学生的空间观念、

  教学重点

  表面积的意义、

  教学难点

  长方体表面积的计算方法、

  教学过程

  一、复习准备、

  1、说出长方形面积的计算公式、

  2、看图回答、

  (1)指出这个长方体的长、宽、高各是多少?

  (2)哪些面的'面积相等?

  (3)填空、

  这个长方体上、下两个面的长是( )宽是( )、

  左、右两个面的长是( )宽是( )、

  前、后两个面的长是( )宽是( )、

  3、想一想、

  长方体和正方体都有几个面?(6个面)

  二、揭示课题、

  今天这节课我们就来学习和研究有关这6个面的一些知识、

  三、教学新课、

  (一)长、正方体表面积的意义、

  1、老师和同学们都拿出准备好的长方体和正方体并在上面分别用“上”、“下”、

  “左”、“右”、“前”、“后”标在6个面上、

  2、沿着长方体和正方体的棱剪开并展平、(老师先示范,学生再做)

  3、你知道长方体或者正方体6个面的总面积叫做它的什么吗?

  教师明确:长方体或者正方体6个面的总面积,叫做它的表面积、

  (板书:长方体和正方体的表面积、)

  (二)长方体表面积的计算方法、

  例1、做一个长6厘米,宽5厘米,高4厘米的长方体的纸盒,至少要用多少平方厘米的硬纸板?

  1、这题的问题,实际上就是要我们求什么?

  2、长方体的表面积包括几组面积相等的长方形?每组面积相等的长方形的长、宽各是多少?

  3、学生分组讨论、

  解法(一)

  6×5×2+6×4×2+5×4×2

  = 60+48+40

  = 148(平方厘米)

  解法(二)

  (6×5+6×4+5×4)×2

  =(30+24+20)×2

  = 74×2

  = 148(平方厘米)

  4、比较上面两种解答方法有什么不同?它们之间有什么联系?

  解法(一)是分别算出上、下面的面积之和;前后面的面积之和;左右面的面积之和,然后算总和、解法(二)是先算出上面、前面、左面这三个面的面积之和,再乘2,根据乘法的分配律可将解法(一)改变成解法(二)、

  四、巩固练习、

  1、一个长方体长4米,宽3米,高2.5米、它的表面积是多少平方米?(用两种方法计算)

  2、一个长方体铁盒,长18厘米,宽15厘米,高12厘米、做这个铁盒至少要用多少平方厘米的铁皮?

  五、课堂小结、

  通过解答例1和做一做,你发现长方体表面积的计算方法吗?

  结论:长方体的表面积=长×宽×2+长×高×2+宽×高×2

  =(长×宽+长×高+宽×高)×2

  六、课后作业、

  1、一个长方体的木箱,长1.2米,宽0.8米,高0.6米,做这个木箱至少要用多少平方米木板?如果这个木箱不做上盖呢?

  2、一个长方体的形状大小如下图、

  (1)它上、下两个面的面积分别是多少平方分米?

  (2)它前、后两个面的面积分别是多少平方分米?

  (3)它左、右两个面的面积分别是多少平方分米?

长方体和正方体教学设计15

  教学内容:

  人教版教材数学五年级下册29页到30页教学目标:

  1、探究、推导长方体和正方体体积的计算公式

  2、理解掌握并运用长方体和正方体体积公式解决实际问题

  3、在探究学习中培养学生动脑思考,动手操作,归纳总结的能力

  教学重点:

  理解掌握长方体和正方体体积的计算公式

  教学难点:

  长方体和正方体体积公式的推导

  教具准备:

  学生准备小正方体(多个)ppt

  教学过程:

  1、填空

  (1)()叫做物体的体积。

  (2)常用的体积单位有()()()

  2、下面各图是用棱长1厘米的小正方体拼成的,它们的体积各是多少。学生回答后,教师总结:物体体积的大小取决于这个物体里所含单位体积的多少。

  1、出示一个长方体实物,请学生猜猜它的体积大约是多少?那么怎么能准确地知道这个物体的体积是多少呢?这节课我们就来学习“长方体的体积”(板书课题)

  2、出示学习目标:

  (1)探究总结长方体和正方体的体积的计算方法

  (2)运用长方体和正方体体积的计算公式解决实际问题

  1、回顾“以旧学新”的几何问题研究方法

  以前我们在研究推导平面图形面积计算公式时,都用过哪些方法:数方格、割补法。看看这两种方法,哪种适合研究长方体体积。简单讨论后,确定用“数方块”的方法。

  2、教师ppt演示切割物体数方块,让学生明白:这种方法虽然可以,但是操作起来麻烦,有些物体是不容易切割,不能切割,而且,物体的长、宽、高必须是整厘米的。

  3、质疑思考:那么我们能不能通过量出长方体长、宽、高的长度,用计算的方法呢?长方体的长、宽、高和长方体的体积之间有着怎样的联系呢?下面,我们就动手操作,小组合作来研究这个问题。

  4、出示小组研究提示

  (1)用体积为1立方厘米的小正方体摆成不同的长方体(至少摆两种)

  (2)把不同的.长方体的相关数据填入下表(29页表格)

  (3)观察上表,你发现了什么?你能总结出长方体体积的计算方法吗?

  6、即使练习:(例1)出示例1,指名口答,指导用字母公式计算的书写格式。

  7、根据例1右边的正方体图形,让学生总结出正方体体积的计算方法正方体体积=棱长×棱长×棱长用字母表示:v=a×a×a=a3 a3读作“a的立方”,表示3个a相乘。

  1、建筑工地要挖一个长50米、宽30米、深50厘米的长方体土坑,一个要挖出多少方的土?(33页第8题)

  2、一块棱长30厘米的正方体冰块,它的体积是多少立方厘米?(33页第9题)

  3、一块长方体肥皂的尺寸如下图,它的体积是多少?要用硬纸板给它做个包装盒,至少需要多少平方厘米的纸板?(31页做一做第一题增加一个问题)

  这节课你有什么收获?

  板书设计:

  长方体和正方体体积

  长方体体积=长×宽×高

  v=abh正方体体积=棱长×棱长×棱长

  v=a×a×a=a3

【长方体和正方体教学设计】相关文章:

长方体和正方体的教学设计01-28

长方体和正方体的认识教学设计模板02-17

长方体和正方体的教学设计15篇03-17

《长方体和正方体的表面积》教学设计05-31

长方体与正方体认识教学设计05-04

长方体教学设计04-03

正方体体积教学设计05-15

《长方体的体积》教学设计07-02

长方体的体积教学设计02-02